Calculus

posted by .

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM?

  • Calculus -

    Make a sketch to get a right angled triangle

    let the time passes since noon be t hrs

    let the noon position of ship B be the origin O
    AO = 10 + 16t miles
    OB = 24t miles
    AB^2 = AO^2 + OB^2
    = (10+16t)^2 + (24t)^2
    2 AB d(AB)/dt = 2(10+16t)(16) + 2(24t)((24)

    when t = 3 ( at 3:00 pm)

    AB^2 = (58)^2 + 72^2 = 8548
    AB = √8548

    d(AB)/dt = (32(58)+ 48(72) )/(2√8548)
    = 28.72

    at that moment they are separating at 28.7 knots

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  2. Calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 4 PM?
  3. Calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 18 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 6 PM?
  4. Calculus

    At noon, ship A is 20 nautical miles due west of ship B. Ship A is sailing west at 22 knots and ship B is sailing north at 18 knots. How fast (in knots) is the distance between the ships changing at 4 PM?
  5. CALCULUS

    At noon, ship A is 40 nautical miles due west of ship B. Ship A is sailing west at 23 knots and ship B is sailing north at 19 knots. How fast (in knots) is the distance between the ships changing at 5 PM?
  6. calculus

    At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 25 knots and ship B is sailing north at 25 knots. How fast (in knots) is the distance between the ships changing at 6 PM?
  7. calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  8. calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  9. calculus

    At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
  10. Calculus

    At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM?

More Similar Questions