precal
posted by Lynn .
sin^2x/cosx=sec^2x1

sin^2x /cosx = 1/cos^2 x  1
multiply each side by cos^2 x
sin^2 x cosx = 1  cos^2x
(1  cos^2x)cosx = 1  cos^2x
cosx  cos^3x  1 + cos^2x = 0
cos^3x  cos^2x  cosx + 1 = 0
cos^2x(cosx  1) (cosx  1) = 0
(cosx1)(cos^2x1) =0
(cosx1)(cosx1)(cosx+1) = 0
cosx = 1 or cosx = 1
x = 0, 2π or x = π
Respond to this Question
Similar Questions

Confused! PreCal
Verify that each equation is an identity.. tan A= sec a/csca I have notes (i wasn't here that day and teacher refuses to reteach) but I don't understand them here is the notes... Problem w/ same directions: Cos x= cotx/csc x = Cosx/Sin … 
Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side … 
Math
Use the fundamental identities to simplify the expression. csc Q / sec Q so this would be 1/sinx / 1/cosx and then 1/sinx times cosx/1 = sin x cosx Is this correct so far? 
Precal
Verify the identity: sin^(1/2)x*cosx  sin^(5/2)*cosx = cos^3x sq root sin x I honestly have no clue how to approach the sin^(5/2)*cosx part of the equation 
Trigonometry
Prove the following trigonometric identities. please give a detailed answer because I don't understand this at all. a. sin(x)tan(x)=cos(x)/cot^2 (x) b. (1+tanx)^2=sec^2 (x)+2tan(x) c. 1/sin(x) + 1/cos(x) = (cosx+sinx)(secx)(cscx) d. … 
Calculus
Q: If y=sinx/(1+tanx), find value of x not greater than pi, corresponding to maxima or minima value of y. I have proceeded thus Equating dy/dx=0 we get{ (1+tanx)cosxsinx.sec^2 x}/(1+tanx)^2=0……..(A) Or cosx+sinx=sinx.sec^2 x … 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know … 
Calculus 2 Trigonometric Substitution
I'm working this problem: ∫ [1tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)[(sin^2x/cos^2x)/(1/cosx) ∫cosxsinx(sinx/cosx) ∫cosx∫sin^2(x)/cosx sinx∫(1cos^2(x))/cosx sinx∫(1/cosx)cosx sinx∫secx∫cosx … 
Trig Identities
Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) / (1sin(x)) … 
Studying for math test
Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. (sin x + cos x) ^2 a. 1+2sinxcosx b. sec^2x−tan^2x+2cosxsinx c. sec x + 2 sin x/sec x d. sin^2x+cos^2x …