Calculus

posted by .

The graph of the curve y2=10 x+10 is a parabola, symmetric with respect to the x-axis. Find the area of the surface generated by rotating about the x-axis the part of this curve corresponding to 0 ≤ x ≤ 20.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    Find the area of the surface generated by revolving the curve y = (x + 3)^1/2, 2 ≤ x ≤ 4 about the x-axis.
  2. Calc

    Set up and evaluate the definite integral for the area of the surface generated by revolving the curve about the x-axis. y = (x³/6) + (1/2x), 1≤ x ≤ 2
  3. calculus

    The given curve is rotated about the y-axis. Find the area of the resulting surface. y = 1/4x^2 − 1/2ln x, 4 ≤ x ≤ 5 The answer is supposed to be 64/3*pi
  4. calculus II SURFACE AREA Integration

    Find the exact area of the surface obtained by rotating the curve about the x-axis. y = sqrt(1 + 5x) from 1 ≤ x ≤ 7
  5. calculus

    Find the surface area of the solid generated by rotating the area between the y-axis, (x^2/y) + y = 1, and -1≤y≤0 is rotated around the y-axis.
  6. asdf

    Find a definite integral indicating the area of the surface generated by revolving the curve y = 3√3x ; 0 ≤ y ≤ 4 about the x – axis. But do not evaluate the integral.
  7. calc

    Find the exact area of the surface obtained by rotating the curve about the x-axis. 9x = y2 + 36, 4 ≤ x ≤ 8 I keep on getting 4pi (3^(3/2) +1) so I tried to put the answer in that way and also 24.78pi But it is wrong
  8. PRE - CALCULUS

    Eliminate the parameter t. Find a rectangular equation for the plane curve defined by the parametric equations. x = 6 cos t, y = 6 sin t; 0 ≤ t ≤ 2π A. x2 - y2 = 6; -6 ≤ x ≤ 6 B. x2 - y2 = 36; -6 ≤ …
  9. Calculus

    Find the volume generated by rotating about the x axis the area bounded by x=0, y=2sinxcosx,, y=2cosx, and x=4, if 0≤x≤pi/2. I don't get the graph.
  10. calculus

    Notice that the curve given by the parametric equations x=25−t^2 y=t^3−16t is symmetric about the x-axis. (If t gives us the point (x,y),then −t will give (x,−y)). At which x value is the tangent to this curve horizontal?

More Similar Questions