Trig

posted by .

HELP!!!! I don't know how to do the trig identity with this problem
csc^4 x-cot^4x= Csx^2 x + cot^2x

  • Trig -

    recall that a^2 - b^2 = (a+b)(a-b)

    csc^4 - cot^4 = (csc^2 - cot^2)(csc^2 + cot^2)

    if you recall that csc^2 = 1 + cot^2 the rest is downhill. . .

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math - Trig

    I'm trying to verify these trigonometric identities. 1. 1 / [sec(x) * tan(x)] = csc(x) - sin(x) 2. csc(x) - sin(x) = cos(x) * cot(x) 3. 1/tan(x) + 1/cot(x) = tan(x) + cot(x) 4. csc(-x)/sec(-x) = -cot(x)
  2. Trigonometry

    Use the trig Identities to find the other 5 trig functions. Problem 7.)Tan(90-x)=-3/8 8.)Csc x=-13/5 9.)Cot x=square root of 3 10.)Sin(90-x)=-.4563 11.)Sec(-x)=4 12.)Cos x=-.2351 I need HELP!
  3. trig 30

    For csc^2 A-1/cot A csc A, what is the simplest equivalent trig expression?
  4. trig

    prove the identity: csc x-1/csc x+1 = cot^x/csc^x+2 csc x+1
  5. trig

    prove the identity sec^2x times cot x minus cot x = tan x
  6. trig

    For each expression in column I, choose the expression from column II to complete an identity: Column I Column II 1. -tanxcosx A. sin^2x/cos^2x 2. sec^2x-1 B. 1/sec^2x 3. sec x/cscx C. sin(-x) 4. 1+sin^2x D.csc^2x-cot^2x+sin^2x 5. …
  7. Pr-Cal/Trig

    1)if the graph of f(x)=cotx is transformed by a horizontal shrink of 1/4 and a horizontal shift left pi, the result is the graph of: a) g(x)= cot[1/4(x-pi)] b) g(x)=cot[1/4(x+pi)] c) g(x)=cot[4(x-pi)] d) g(x)=cot[4(x+pi)] e) g(x)=cot[4x+pi] …
  8. Trig verifying identities

    I am having trouble with this problem. sec^2(pi/2-x)-1= cot ^2x I got : By cofunction identity sec(90 degrees - x) = csc x secx csc-1 = cot^2x Then split sec x and csc-1 into two fractions and multiplied both numerator and denominators …
  9. trig

    verify (csc^4-1)/cot^2x=2+cot^2x So this is what I have so far on the left side (csc^2x+1)(cscx+1)(cscx-1)/cot^2x =(csc^2x+1)(cot^2x)/cot^2x i think I'm doing something wrong. Please help!
  10. Pre-Calculus

    Verify the identity. (csc(2x) - sin(2x))/cot(2x)=cos(2x) =csc(2x)/cot(2x) - sin(2x)/cot(2x) =csc(2x)/cot(2x) - cos(2x) Is this correct so far?

More Similar Questions