Trig
posted by Quetzally .
HELP!!!! I don't know how to do the trig identity with this problem
csc^4 xcot^4x= Csx^2 x + cot^2x

recall that a^2  b^2 = (a+b)(ab)
csc^4  cot^4 = (csc^2  cot^2)(csc^2 + cot^2)
if you recall that csc^2 = 1 + cot^2 the rest is downhill. . .
Respond to this Question
Similar Questions

Math  Trig
I'm trying to verify these trigonometric identities. 1. 1 / [sec(x) * tan(x)] = csc(x)  sin(x) 2. csc(x)  sin(x) = cos(x) * cot(x) 3. 1/tan(x) + 1/cot(x) = tan(x) + cot(x) 4. csc(x)/sec(x) = cot(x) 
Trigonometry
Use the trig Identities to find the other 5 trig functions. Problem 7.)Tan(90x)=3/8 8.)Csc x=13/5 9.)Cot x=square root of 3 10.)Sin(90x)=.4563 11.)Sec(x)=4 12.)Cos x=.2351 I need HELP! 
trig 30
For csc^2 A1/cot A csc A, what is the simplest equivalent trig expression? 
trig
prove the identity: csc x1/csc x+1 = cot^x/csc^x+2 csc x+1 
trig
prove the identity sec^2x times cot x minus cot x = tan x 
trig
For each expression in column I, choose the expression from column II to complete an identity: Column I Column II 1. tanxcosx A. sin^2x/cos^2x 2. sec^2x1 B. 1/sec^2x 3. sec x/cscx C. sin(x) 4. 1+sin^2x D.csc^2xcot^2x+sin^2x 5. … 
PrCal/Trig
1)if the graph of f(x)=cotx is transformed by a horizontal shrink of 1/4 and a horizontal shift left pi, the result is the graph of: a) g(x)= cot[1/4(xpi)] b) g(x)=cot[1/4(x+pi)] c) g(x)=cot[4(xpi)] d) g(x)=cot[4(x+pi)] e) g(x)=cot[4x+pi] … 
Trig verifying identities
I am having trouble with this problem. sec^2(pi/2x)1= cot ^2x I got : By cofunction identity sec(90 degrees  x) = csc x secx csc1 = cot^2x Then split sec x and csc1 into two fractions and multiplied both numerator and denominators … 
trig
verify (csc^41)/cot^2x=2+cot^2x So this is what I have so far on the left side (csc^2x+1)(cscx+1)(cscx1)/cot^2x =(csc^2x+1)(cot^2x)/cot^2x i think I'm doing something wrong. Please help! 
PreCalculus
Verify the identity. (csc(2x)  sin(2x))/cot(2x)=cos(2x) =csc(2x)/cot(2x)  sin(2x)/cot(2x) =csc(2x)/cot(2x)  cos(2x) Is this correct so far?