Physics
posted by Brando .
a frictionless roller coaster car of mass m = 719 kg tops the first hill with speed v0 = 15.2 m/s at height h = 48.9 m. How much work does the gravitational force do on the car from that point to (a) point A, (b) point B, and (c) point C? If the gravitational potential energy of the carEarth system is taken to be zero at C, what is its value when the car is at (d)B and (e)A?
First hill=h
A=h
B=h/2
C=ground level
Respond to this Question
Similar Questions

Physics
A rollercoaster car speeds down a hill past point A where R1 = 9.8 m and then rolls up a hill past point B where R2 = 15.8 m (R1 and R2 represent the radiuses/ radii) The car has a speed of 18.6 m/s at point A. if the track exerts … 
Physics
A rollercoaster car speeds down a hill past point A where R1 = 10.4 m and then rolls up a hill past point B where R2 = 15.6 m, as shown below. R1 and 2 are radii (a) The car has a speed of 21.0 m/s at point A. if the track exerts … 
physics
In the figure, a frictionless roller coaster car of mass m = 672 kg tops the first hill with speed v0 = 19.4 m/s at height h = 34.7 m. How much work does the gravitational force do on the car from that point to (a) point A, (b) point … 
Physics
A roller coaster works by gravitational energy. The coaster car is pulled up to a high point and then released, rolling downwards on the track through all manners of curves and loops. I have a short roller coaster car that I pull up … 
Physics
Analyzing Roller Coaster Performance Using Conservation of Mechanical Energy At the beginning of a roller coaster ride, the car is lifted to the top of a large hill and released. The speed of the car at the top of the hill is small, … 
Physics
At the beginning of a roller coaster ride, the car is lifted to the top of a large hill and released. The speed of the car at the top of the hill is small, so we will assume it to be zero. The car rolls freely down this hill and reaches … 
Physics
At the beginning of a roller coaster ride, the car is lifted to the top of a large hill and released. The speed of the car at the top of the hill is small, so we will assume it to be zero. The car rolls freely down this hill and reaches … 
Physics
At the beginning of a roller coaster ride, the car is lifted to the top of a large hill and released. The speed of the car at the top of the hill is small, so we will assume it to be zero. The car rolls freely down this hill and reaches … 
physics
In the figure, a frictionless roller coaster car of mass m = 938 kg tops the first hill with speed v0 = 14.9 m/s at height h = 31.5 m. How much work does the gravitational force do on the car from that point to (a) point A, (b) point … 
Physics
A rollercoaster car speeds down a hill past point A where R1 = 8.2 m and then rolls up a hill past point B where R2 = 15.4 m, as shown below. (a) The car has a speed of 21.0 m/s at point A. if the track exerts a normal force on the …