Calculus (Area Between Curves)
posted by Mishaka .
Find the area of the region IN THE FIRST QUADRANT (upper right quadrant) bounded by the curves y=sin(x)cos(x)^2, y=2xcos(x^2) and y=44x.
You get:
a.)1.8467
b.) 0.16165
c.) 0.36974
d.) 1.7281
e.) 0.37859

Calculus (Area Between Curves) 
MathMate
Just answered a minute ago at:
http://www.jiskha.com/display.cgi?id=1330550488
Respond to this Question
Similar Questions

calculus
Sketch the region in the first quadrant enclosed by the given curves. Decide whether to integrate with respect to x or y. Then find the area of the region. y=10cosx, y=10sin2x,x=0 
MATH
Region A that on xyplane is bounded by two (2) curves and a line. The curves are y=x^32x+3 and y=x^2+3 while the line is x=0. It is located in the first quadrant of xyplane. Determine the area of region A. 
Calculus (Area Between Curves)
Find the area of the region bounded by the curves y^2=x, y4=x, y=2 and y=1 (Hint: You'll definitely have to sketch this one on paper first.) You get: a.) 27/2 b.) 22/3 c.) 33/2 d.) 34/3 e.) 14 
Calculus (Area Between Curves)
Find the area of the region IN THE FIRST QUADRANT (upper right quadrant) bounded by the curves y=sin(x)cos(x)^2, y=2xcos(x^2) and y=44x. You get: a.)1.8467 b.) 0.16165 c.) 0.36974 d.) 1.7281 e.) 0.37859 Based on my calculations, I … 
calculus
Consider the curves y = x^2and y = mx, where m is some positive constant. No matter what positive constant m is, the two curves enclose a region in the first quadrant.Without using a calculator, find the positive constant m such that … 
Calculus
1. Find the area of the region bounded by the curves and lines y=e^x sin e^x, x=0, y=0, and the curve's first positive intersection with the xaxis. 2. The area under the curve of y=1/x from x=a to x=5 is approximately 0.916 where … 
CalculusArea between curves
Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Then find the area of the region. 2y=4*sqrt(x) , y=5 and 2y+4x=8 please help! i've been trying this problem the last couple days, even … 
Calculus
find the area of the region bounded by the curves y=x^21 and y =cos(x) 
Calculus
Find the area of the region in the first quadrant between the curves y=x^8, and y=2x^2x^4 
calculus review please help!
1) Find the area of the region bounded by the curves y=arcsin (x/4), y = 0, and x = 4 obtained by integrating with respect to y. Your work must include the definite integral and the antiderivative. 2)Set up, but do not evaluate, the …