# college algebra

posted by .

given f(x)=4x-5, g(x)= x+5 over 4 Find (fog)(x). are these inverse functions?

• college algebra -

(fog)(x)
= f(g(x))
= f( (x+5)/4)
= 4(x+5)/4 - 5
= x+5-5 = x

so , yes, they are inverses of each other

## Similar Questions

1. ### math

Solve the two sided inequality and show the solution on real line 7 < 1-2x ≤ 10 Given two functions as: f(x) = and g(x) = Find fog(x) also find the domain of f, g and fog Simplify, then apply the rules of limit to evaluate
2. ### Algebra

Use composition of functions to show that the functions f(x) = 5x + 7 and g(x)= 1/5x-7/5 are inverse functions. That is, carefully show that (fog)(x)= x and (gof)(x)= x.
3. ### calculus

Given two functions as: f(x) = x2-x-1 and g(x) = 3/x Find fog(x) also find the domain of f, g and fog
4. ### math

Solve the two sided inequality and show the solution on real line 7 < 1-2x ≤ 10 Given two functions as: f(x) = x2-x-1 and g(x) = 3/x Find fog(x) also find the domain of f, g and fog
5. ### college algebra

Given f(x)=sqrt x+4 and g(x)= 1/x find (fog)(x)
6. ### college algebra

Find the inverse of the following function. Find the domain, range, and asymptotes of each function. Graph both functions on the same coordinate plane f(x)=4+e^-x/3 please help me! show steps also, if i an just given an answer that …
7. ### college algebra

find functions f anf g so that fog equals H H(x)=ãx^2+17 please show work
8. ### Algebra

Can anyone help me with the following, by providing the steps to get there and what it is that you are doing?
9. ### Algebra

Can anyone help me with this problem? I need to show all steps and explain what is happening. A graph would be great for a visual too if possible. Thank you for any help. We define the following functions: f(x) = 2x + 5, g(x) = x^2
10. ### Algebra

Given the functions f(x)=x+5/3 and g(x)=1/f^-1(x)+1, find the value of g(3). The first step would first be to find the inverse of x+1, the denominator of the fraction. I think the inverse would be 1-x. And now we have 1/1-x so we can …

More Similar Questions

Post a New Question