Math

posted by .

A race car starts from rest on a circular track of radius 565 m. The car's speed increases at the constant rate of 0.520 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following.
(a) the speed of the race car
m/s

(b) the distance traveled
m

( c) the elapsed time
s

  • Math -

    a) V^2/R = 0.520 m/s^2
    V = 17.141 m/s

    c) t = V/a = 32.963 s

    b) S = (V/2)*t = 282.51 m
    (measured along a circular arc)

    It will have completed 0.499 radians of the track, or about 28.6 degrees

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    Hi, I have two homework problems I am having issues with. 1. Two carts of equal mass, m = 0.250 kg, are placed on a frictionless track that has a light spring of force constant k = 53.0 N/m attached to one end of it. The red cart is …
  2. Physics

    A race car starts from rest on a circular track of radius 507 m. The car's speed increases at the constant rate of 0.790 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following. …
  3. physics

    A race car starts from rest on a circular track of radius 265 m. The car's speed increases at the constant rate of 0.540 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following.
  4. Physics

    A race car starts from rest on a circular track of radius 500 m. The car's speed increases at the constant rate of 0.520 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following. …
  5. Physics- PLEASE HELP

    A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 8.80 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine …
  6. Physics HELP!

    A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 8.80 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine …
  7. physics

    A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 2.90 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine …
  8. physics

    A toy race car starts from rest on a circular track of radius 4.30 m. The cars speed increases at the constant rate of 2.90 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, determine …
  9. Physics

    A race car starts from rest on a circular track of radius 445 m. The car's speed increases at the constant rate of 0.380 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following. …
  10. Physics

    A race car starts from rest on a circular track of radius 279 m. The car's speed increases at the constant rate of 0.760 m/s2. At the point where the magnitudes of the centripetal and tangential accelerations are equal, find the following …

More Similar Questions