Algebra 2

posted by .

Using the information given about a triangle, which law must you use to solve the triangle? Law of Sines, Law of Cosines, or Neither.
ASA
SSS
SAS
AAA
SSA
AAS

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Trig

    Should the triangle be solved beginning with Law of Sines of Law of Cosines. Then solve the triangle. Round to the nearest tenth. a=16, b=13, c=10. Cosines A=93 degrees, B=54 degrees, C=33 degrees
  2. Trig

    Should the triangle be solved beginning with Law of Sines of Law of Cosines. Then solve the triangle. Round to the nearest tenth. A=56 degrees, B=38 degrees, a=13. Sines. I get confused on the formula. I know C=86 degrees
  3. geometry

    If a triangle has sides of lengths a and b, which make a C-degree angle, then the length of the side opposite C is c, where c2 = a2 + b2 − 2ab cosC. This is the SAS version of the Law of Cosines. Explain the terminology. Derive …
  4. math

    solve each triangle using either the Law of Sines or the Law of Cosines. If no triangle exists, write “no solution.” Round your answers to the nearest tenth. A = 23°, B = 55°, b = 9 A = 18°, a = 25, b = 18
  5. Trigonometry/Geometry

    In most geometry courses, we learn that there's no such thing as "SSA Congruence". That is, if we have triangles ABC and DEF such that AB = DE, BC = EF, and angle A = angle D, then we cannot deduce that ABC and DEF are congruent. However, …
  6. Trig-Medians and law of cosines and sines

    In triangle ABC, we have AB=3 and AC=4. Side BC and the median from A to BC have the same length. What is BC?
  7. Trigonometry/Geometry - Law of sines and cosines

    In most geometry courses, we learn that there's no such thing as "SSA Congruence". That is, if we have triangles ABC and DEF such that AB = DE, BC = EF, and angle A = angle D, then we cannot deduce that ABC and DEF are congruent. However, …
  8. math - trig

    Why cant we solve an oblique triangle with the Law of Sines if we are given SAS?
  9. Precalculus

    In most geometry courses, we learn that there's no such thing as "SSA Congruence". That is, if we have triangles ABC and DEF such that AB = DE, BC = EF, and angle A = angle D, then we cannot deduce that ABC and DEF are congruent. However, …
  10. Math

    Line CB is perpendicular to line AD at B between A and D. Angle BCA is congruent to angle BCD and line AC is congruent to line DC. Which congruency statements (HL, AAS, ASA, SAS, and SSS) can you use to conclude that triangle ABC is …

More Similar Questions