Algebra 2
posted by Katy .
Using the information given about a triangle, which law must you use to solve the triangle? Law of Sines, Law of Cosines, or Neither.
ASA
SSS
SAS
AAA
SSA
AAS
Respond to this Question
Similar Questions

Trig
Should the triangle be solved beginning with Law of Sines of Law of Cosines. Then solve the triangle. Round to the nearest tenth. a=16, b=13, c=10. Cosines A=93 degrees, B=54 degrees, C=33 degrees 
Trig
Should the triangle be solved beginning with Law of Sines of Law of Cosines. Then solve the triangle. Round to the nearest tenth. A=56 degrees, B=38 degrees, a=13. Sines. I get confused on the formula. I know C=86 degrees 
geometry
If a triangle has sides of lengths a and b, which make a Cdegree angle, then the length of the side opposite C is c, where c2 = a2 + b2 − 2ab cosC. This is the SAS version of the Law of Cosines. Explain the terminology. Derive … 
math
solve each triangle using either the Law of Sines or the Law of Cosines. If no triangle exists, write “no solution.” Round your answers to the nearest tenth. A = 23°, B = 55°, b = 9 A = 18°, a = 25, b = 18 
Trigonometry/Geometry
In most geometry courses, we learn that there's no such thing as "SSA Congruence". That is, if we have triangles ABC and DEF such that AB = DE, BC = EF, and angle A = angle D, then we cannot deduce that ABC and DEF are congruent. However, … 
TrigMedians and law of cosines and sines
In triangle ABC, we have AB=3 and AC=4. Side BC and the median from A to BC have the same length. What is BC? 
Trigonometry/Geometry  Law of sines and cosines
In most geometry courses, we learn that there's no such thing as "SSA Congruence". That is, if we have triangles ABC and DEF such that AB = DE, BC = EF, and angle A = angle D, then we cannot deduce that ABC and DEF are congruent. However, … 
math  trig
Why cant we solve an oblique triangle with the Law of Sines if we are given SAS? 
Precalculus
In most geometry courses, we learn that there's no such thing as "SSA Congruence". That is, if we have triangles ABC and DEF such that AB = DE, BC = EF, and angle A = angle D, then we cannot deduce that ABC and DEF are congruent. However, … 
Math
Line CB is perpendicular to line AD at B between A and D. Angle BCA is congruent to angle BCD and line AC is congruent to line DC. Which congruency statements (HL, AAS, ASA, SAS, and SSS) can you use to conclude that triangle ABC is …