Calculus AB
posted by Savannah .
A particle is moving along the xaxis so that at time t its acceleration is
a(t)=ðcos(ðt)
At time t=1/2, the velocity v of the particle is 1/2.
Find the velocity of the particle at any time t. I think I got that right, as sinðt + C.
Now it wants the minimum velocity of the particle. How do I find that?

Ugh the pi symbol didn't work. All of the ð should be pi. so it would be a(t) = picos(pit)
and my answer should be sin(pit) + C 
a(t) = π cos(πt)
v(t) = sin (πt) + c . where v(t) is velocity
when t=1/2, v(1/2) = 1/2
1/2 = sin (π/2) + c
1/2 = 1 + c
c = 1/2
v(t) = sin (πt)  1/2
for a min of v(t) , v'(t) = 0 , that is, a(t) = 0
πcos(πt) = 0
cos(πt) = 0
πt = π/2 or πt = 3π/2
t = 1/2 or t = 3/2
we already know v(1/2) = 1/2
we need
v(3/2) = sin(3π/2)  1/2
= 1  1/2 = 3/2
so the minimum velocity is 3/2
Respond to this Question
Similar Questions

calculus
A Particle moves along the xaxis so that at any time t>0, its acceleration is given by a(t)= ln(1+2^t). If the velocity of the particle is 2 at time t=1, then the velocity of the particle at time t=2 is? 
Calc
a partial moves along the xaxis so that its velocity at time t, for 0< = t = < 6, is given by a differentiable function v whose graph is shown above. The velocity is 0 at t=0, t=5, and the graph has horizontal tangents at t=4. … 
help math
a partial moves along the xaxis so that its velocity at time t, for 0< = t = < 6, is given by a differentiable function v whose graph is shown above. The velocity is 0 at t=0, t=5, and the graph has horizontal tangents at t=4. … 
physics
The position of a particle moving along an x axis is given by x = 15t2  2.0t3, where x is in meters and t is in seconds. (a) Determine the position, velocity, and acceleration of the particle at t = 3.0 s. x = m v = m/s a = m/s2 (b) … 
Calculus
a particle starts at time t = 0 and moves along the x axis so that its position at any time t>= 0 is given by x(t) = ((t1)^3)(2t3) a.find the velocity of the particle at any time t>= 0 b. for what values of t is the velocity … 
Calculus
At time t >or= to 0, the position of a particle moving along the xaxis is given by x(t)= (t^3/3)+2t+2. For what value of t in the interval [0,3] will the instantaneous velocity of the particle equal the average velocity of the … 
calculus
5. A particle moves along the y – axis with velocity given by v(t)=tsine(t^2) for t>=0 . a. In which direction (up or down) is the particle moving at time t = 1.5? 
Physics
A particle starts from the origin at t = 0 and moves along the positive x axis. A graph of the velocity of the particle as a function of the time is shown in the figure; the vaxis scale is set by vs = 7.0 m/s. (a) What is the coordinate … 
calculus
Consider a particle moving along the xaxis where x(t) is the position of the particle at time t, x'(t) is its velocity, and x''(t) is its acceleration. A particle moves along the xaxis at a velocity of v(t) = 5/√t, t > 0. … 
Physics
The velocity graph of a particle moving along the xaxis is shown. The particle has zero velocity at t=0.00s and reaches a maximum velocity, vmax, after a total elapsed time, t total. If the initial position of the particle is x0 =6.22m, …