Trig
posted by Don .
Proving Identities:
2 columns
(tan + cot)^2 = sec^2 + csc^2
I'm having trouble breaking down the left side to = the right side..
Any help please

Trig 
Damon
left
(sin/cos + cos/sin)^2
sin^2/cos^2 + 2 + cos^2/sin^2
[sin^4 +2sin^2 cos^2+cos^4 ]/cos^2 sin^2
(sin^2+cos^2)^2/cos^2sin^2
1^2/sin^2cos^2
1/sin^2 cos^2
right
1/cos^2 + 1/sin^2
sin ^2/cos^2sin^2 + cos^2/cos^2 sin^2
1/cos^2 sin^2 
Trig 
Don
Hi Damon .. apparently they want the right side to stay "as is" and for the left side to transform into exactly what the right side says .... sorry

Trig 
Damon
I do not think so. That would be a very unusual thing for "them" to say :)

Trig 
Don
The question says: Set up a 2 column proof to show that each of the following equations is an identity. Transform the left side to become the right side.
(tan + cot)^2 = sec^2 + csc^2 
Trig 
Steve
(tan + cot)^2 = tan^2 + 1 + cot^2
= sec^2  1 + 2 + csc^2  1
= sec^2 + csc^2 
Trig  oops 
Steve
oops that's tan^2 + 2 + cot^2
Respond to this Question
Similar Questions

inverse trig functions
evaluate the following expressions: tan(sec^1(5/3)) tan(sec^1(25/7)) cot(csc^1(5/3)) i know the answers.. i jus don't know how to solve them =( PLEASE help me I assume your sec^1 notation denot4es the arcsecant function, etc. sec^1 … 
Trigonometry
Hello all, In our math class, we are practicing the trigonometric identities (i.e., sin^2(x)+cos^2(x)=1 or cot(x)=cos(x)/sin(x). Now, we are working on proofs that two sides of an equation are equal (for example, sin(x)*csc(x)=1; sin(x)csc(x)=sin(x)/sin(x)=1; … 
Trig
Find the exact values of the six trigonometric functions 0 if the terminal side of 0 in standard position contains the points(5,4). (0 is not the number zero I don't know what its called) I have to find r first. r=sqrt x^2+y^2 r=sqrt … 
trig
Ok so I have a right triangle with the hypothenuse = to 5, one side =3 and the other =4 and X is the angle between the hypothenuse and the side that =3. I'm supposed to find the sin, cos, tan, cot, sec, csc of X. I can't seem to get … 
trig
I do not understand these problems. :S I'd really appreciate the help. Use trigonometric identities to transform the left side of the equation into the right side. cot O sin O = cos O sin^2 O  cos^2O = 2sin^2 O 1 (tan O + cot O)/tan … 
Math  Trig
I'm trying to verify these trigonometric identities. 1. 1 / [sec(x) * tan(x)] = csc(x)  sin(x) 2. csc(x)  sin(x) = cos(x) * cot(x) 3. 1/tan(x) + 1/cot(x) = tan(x) + cot(x) 4. csc(x)/sec(x) = cot(x) 
trigonometry repost
Reduce (csc^2 x  sec^2 X) to an expression containing only tan x. (is this correct? 
Trig
The question is: Set up a 2 column proof to show that each of the equations is an identity. Transform the left side to become the right side. a. (tan + cot)^2 = sec^2 + csc^2 I'm having trouble with this. b. (cos + sin)/cos + (cos … 
Trig verifying identities
I am having trouble with this problem. sec^2(pi/2x)1= cot ^2x I got : By cofunction identity sec(90 degrees  x) = csc x secx csc1 = cot^2x Then split sec x and csc1 into two fractions and multiplied both numerator and denominators … 
trig
verify (csc^41)/cot^2x=2+cot^2x So this is what I have so far on the left side (csc^2x+1)(cscx+1)(cscx1)/cot^2x =(csc^2x+1)(cot^2x)/cot^2x i think I'm doing something wrong. Please help!