Physics

posted by .

A long thin rod of mass M = 2:00 kg and length L = 75:0 cm is free to rotate about its
center as shown. Two identical masses (each of mass m = .403 kg) slide
without friction along the rod. The two masses begin at the rod's point of rotation when
the rod is rotating at 10.0 rad/s.
(a) When they have moved halfway to the end of the rod, how fast (rad/s) is the rod
rotating?
(b) When the masses are halfway to the end of the rod, what is the ratio of the nal
kinetic energy to the initial kinetic energy (Kf=Ki)?
(c) When they reach the end, how fast is the rod rotating (rad/s)?

  • Physics -

    Use conservation of angular momentum.

    I*w = constant

    I is the moment of inertia, which is
    (1/12)Mrod*L^2 + 2m*R^2

    R is the distance of the masses from the center of the rod.

    w = 10.0 when R = 0

    For (a) and (b), R = L/4

    For (c), R = L/2

    Let's do (a)

    Angular momentum with massesw m at R=0:
    = (1/12)*2.00*(0.75)^2*10
    = 9.38*10^-1 kg m^2/s
    (This remains constant).
    When R = L/4 = 0.1875 m,
    I*w = (2/12)*(0.75)^2*w + 2*(0.403)*(0.1875)^2*w
    = (9.38*10^-2 + 2.83*10^-2)w
    = 1.221*10^-1*w = 9.38*10^-1
    w = 7.68 m/s

    For (b), compare initial and final values of (1/2) I w^2

    For (c), repeat the process of (a), but use R = L/2

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    Two 2.3 kg balls are attached to the ends of a thin rod of negligible mass, 65 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 44 …
  2. physics

    A mobile is constructed from a thin rod of mass 50 g and length 50 cm. Two hanging masses are positioned at each end of the rod. The mass of one of the hanging masses is 100 g. What must be the mass of the other hanging mass so that …
  3. Physics- Angular Momentum

    A long thin rod of mass M=2.00 kg and length L=75.0 cm is free to rotate about its center. Two identical masses (each of mass m = .45kg) slide without friction along the rod. The two masses begin at the rod's point of rotation when …
  4. Physics

    Two 2.00kg balls are attached to the ends of a thin rod length 50.0cm and negligible mass. The rod is free to rotate about a horizontal axis at the center, without friction. With the rod horizontal, a 50.0 gram glob of putty drops …
  5. Angular Momentum

    A long thin rod of mass M = 2.00 kg and length L = 75.0 cm is free to rotate about its center as shown. Two identical masses (each of mass m = .421 kg) slide without friction along the rod. The two masses begin at the rod's point of …
  6. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 70 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate …
  7. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate …
  8. physics

    A 1-kg mass (the blue mass) is connected to a 8-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate …
  9. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate …
  10. physics

    A 1-kg mass (the blue mass) is connected to a 9-kg mass (the green mass) by a massless rod 67 cm long, as shown in the figure. A hole is then drilled in the rod 40.2 cm away from the 1-kg mass, and the rod and masses are free to rotate …

More Similar Questions