physics

posted by .

Flywheels are large massive wheels (disks) used to store energy. They can be spun up slowly, and then the wheel’s energy can be released quickly to accomplish a task that demands high power. A large flywheel has a 2.4 m diameter and a mass of 300 kg. Its maximum angular velocity is 1500 rpm.

a. The flywheel is spun up at a constant torque of 70 Nm. How long does it take the flywheel to reach top speed?

b. How much energy is stored in the flywheel?

c. After reaching top speed, the flywheel is connected to a machine to which it will deliver energy. Half of the energy stored in the flywheel is delivered in 2.5 sec. What is the average power delivered to the machine?

d. How much torque does the flywheel exert on the machine?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics.

    A flywheel is a solid disk that rotates about an axis that is perpendicular to the disk at its center. Rotating flywheels provide a means for storing energy in the form of rotational kinetic energy and are being considered as a possible …
  2. Physics

    A passenger bus in Zurich, Switzerland derived its motive power from the energy stored in a large flywheel. The wheel was brought up to speed periodically, when the bus stopped at a station, by an electric motor, which could then be …
  3. physics

    Some special vehicles have spinning disks (flywheels) to store energy while they roll downhill. They use that stored energy to lift themselves uphill later on. Their flywheels have relatively small rotational masses but spin at enormous …
  4. Physics

    In a city with an air-pollution problem, a bus has no combustion engine. It runs on energy drawn from a large, rapidly rotating flywheel under the floor of the bus. The flywheel is spun up to its maximum rotation rate of 5150 rev/min …
  5. Physics

    Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.5 m diameter and a mass …
  6. Physics

    A flywheel is a solid disk that rotates about an axis that is perpendicular to the disk at its center. Rotating flywheels provide a means for storing energy in the form of rotational kinetic energy and are being considered as a possible …
  7. physics

    To drive a typical car at 40 mph on a level road for one hour requires about 3.2 × 10^7 J of energy. Suppose one tried to store this much energy in a spinning solid cylindrical flywheel which was then coupled to the wheels of the …
  8. Physics

    Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.7 m diameter and a mass …
  9. physics

    A flywheel is a solid disk that rotates about an axis that is perpendicular to the disk at its center. Rotating flywheels provide a means for storing energy in the form of rotational kinetic energy and are being considered as a possible …
  10. Physics

    The large disk-shaped flywheel illustrated below has a radius R of 0.25 m. It is made to spin by the small wheel that contacts it at its rim. The small wheel applies a constant force of 1430 N. Friction in the bearing exerts a retarding …

More Similar Questions