# physics

posted by .

A planet orbits its star in a circular orbit (uniform circular motion) of radius 1.62x10^11 m. The orbital period of the planet around its star is 37.0 years. Determine the following quantities for this orbital motion: Angular acceleration , Tangential acceleration, Radial acceleration, Angular velocity, and Tangential velocity

• physics -

C = 2pi*r = 6.28 * 1.62*10^11 = 10.17*10^11m.

Va = 1rev/37yrs * 6.28rad/rev = 0.1697rad/yr. = 9.73deg/yr = Angular velocity.

Vt = 10.17*10^11m/rev * (1/37)rev/yr *
(1/8760)yr/h = 3.138*10^6m/h = 3138km/h
= Tangential velocity.

## Similar Questions

1. ### physics??

Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 41.3 km/s and 52.7 km/s. The slower planet's orbital period is 7.74 years. (a) …
2. ### physics

A planet with a mass of (7*10^21) kg is in a circular orbit around a star with a mass of (2*10^30) kg. The planet has an orbital radius of (3*10^10) m. (a) What is the linear orbital velocity of the planet?
3. ### physics

A planet orbits its star in a circular orbit (uniform circular motion) of radius 1.62x10^11 m. The orbital period of the planet around its star is 37.0 years. Determine the following quantities for this orbital motion: Angular acceleration …
4. ### physics

A planet orbits its star in a circular orbit (uniform circular motion) of radius 1.62x10^11 m. The orbital period of the planet around its star is 37.0 years. Determine the following quantities for this orbital motion: Angular acceleration …
5. ### physics

A planet orbits its star in a circular orbit (uniform circular motion) of radius 1.62x10^11 m. The orbital period of the planet around its star is 37.0 years. Determine the following quantities for this orbital motion: Angular acceleration …
6. ### physics

A planet orbits its star in a circular orbit (uniform circular motion) of radius 1.62x10^11 m. The orbital period of the planet around its star is 37.0 years. Determine the following quantities for this orbital motion: Angular acceleration …
7. ### College Physics

Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 43.5 km/s and 54.0 km/s. The slower planet's orbital period is 6.53 years. (a) …
8. ### physics 1

Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 43.6 km/s and 63.5 km/s. The slower planet's orbital period is 8.36 years. (a) …
9. ### college physics 1

Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 35.1 km/s and 63.3 km/s. The slower planet's orbital period is 6.74 years. (a) …
10. ### Physics

Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 36.0 km/s and 50.6 km/s. The slower planet's orbital period is 7.78 years. (a) …

More Similar Questions