Calculus
posted by Frederick E. .
Show that limit as n approaches infinity of (1+x/n)^n=e^x for any x>0...
Should i use the formula e= lim as x>0 (1+x)^(1/x)
or
e= lim as x>infinity (1+1/n)^n
Am i able to substitute in x/n for x? and then say that
e lim x >0 (1+x/n)^(1/(x/n))
and then raise it to the xth power
ie. e^x and lim x > (1+x/n)^(n)
Thanks for any help.. just tell me if is correct please or if i am on the right track
also,, how do i say that this is for all x>0?
Respond to this Question
Similar Questions

Calculus  ratio test
infinity of the summation n=1: (e^n)/(n!) [using the ratio test] my work so far: = lim (n>infinity)  [(e^n+1)/((n+1)!)] / [(e^n)/(n!)]  = lim (n>infinity)  [(e^n+1)/((n+1)!)] * [(n!)/(e^n)]  = lim (n>infinity)  ((e^n)(e^1)(n!)) … 
calculus  ratio test
infinity of the summation n=1: (e^n)/(n!) [using the ratio test] my work so far: = lim (n>infinity)  [(e^n+1)/((n+1)!)] / [(e^n)/(n!)]  = lim (n>infinity)  [(e^n+1)/((n+1)!)] * [(n!)/(e^n)]  = lim (n>infinity)  ((e^n)(e^1)(n!)) … 
Precal
Please determine the following limits if they exist. If the limit does not exist put DNE. lim 2+6x3x^2 / (2x+1)^2 x>  infinity lim 4n3 / 3n^2+2 n> infinity I did lim 2+6x3x^2 / (2x+1)^2 x>  infinity (2+6x3x²)/(4x²+4x+1) … 
Calc. Limits
Are these correct? lim x>0 (x)/(sqrt(x^2+4)  2) I get 4/0= +/ infinity so lim x>0+ = + infinity? 
calc
Are these correct? lim x>0 (x)/(sqrt(x^2+4)  2) I get 4/0= +/ infinity so lim x>0+ = + infinity? 
Calc Please Help
Are these correct? lim x>0 (x)/(sqrt(x^2+4)  2) I get 4/0= +/ infinity so lim x>0+ = + infinity? 
Calculus
Find the horizontal asymptote of f(x)=e^x  x lim x>infinity (e^x)x= infinity when it's going towards infinity, shouldn't it equal to negative infinity, since 0infinity =  infinity lim x> infinity (e^x)x= infinity 
Calculus
Show that limit as n approaches infinity of (1+x/n)^n=e^x for any x>0... Should i use the formula e= lim as x>0 (1+x)^(1/x) or e= lim as x>infinity (1+1/n)^n Am i able to substitute in x/n for x? 
AP Calculus
if i define the function f(x)= x^3x^23x1 and h(x) = f(x)/g(x), then evaluate the limit (3h(x)+f(x)2g(x), assuming you know the following things about h(x): h is continuous everywhere except when x = 1 lim as x approaches infinity … 
calculus
if i define the function f(x)= x^3x^23x1 and h(x) = f(x)/g(x), then evaluate the limit (3h(x)+f(x)2g(x), assuming you know the following things about h(x): h is continuous everywhere except when x = 1 lim as x approaches infinity …