mathematical induction
posted by aya .
solve this using the mathematical induction : 1/1(3)+1/3(5)+1/5(7)+......+1/(2n1)(2n+1)=n/(2n+1)

First, verify for n=1:
1/1*3 = 1/(3)  true
Assume it is true for n:
1/1*3 + 1/3*5 + ... + 1/(2n1)(2n+1) = n/(2n+1)
Now, add the next term to both sides:
1/1*3 + 1/3*5 + ... + 1/(2n1)(2n+1) + 1/(2n+1)(2n+3) = n/(2n+1) + 1/(2n+1)(2n+3)
= [n(2n+3) + 1]/(2n+1)(2n+3)
= (2n^2 + 3n + 1)/(2n+1)(2n+3)
= (2n+1)(n+1)/(2n+1)(2n+3)
= (n+1)/(2(n+1)+1)
This is the formula, with n replaced by n+1.
So, if it's true for n, it's true for n+1.
It's true for n=1, so therefore also for n=2,3,4,...
Respond to this Question
Similar Questions

math
how do you prove that (a1) divides ((a^n)1) evenly using mathematical induction 
advance algebra
1(2)+2(3)+3(4)+...+n(n+1)= n(n+1)(n+2)/2 using the mathematical induction. please help.. 
advance algebra
2(2^1) +3(2^2) + 4(2^3)+...+n^3 = [n(n+1)/2]^2 using the mathematical induction please help! 
AP Calc
Use mathematical induction to prove that the statement holds for all positive integers. Also, can you label the basis, hypothesis, and induction step in each problem. Thanks 1. 2+4+6+...+2n=n^2+n 2. 8+10+12+...+(2n+6)=n^2+7n 
Calculus
Use mathematical induction to prove that the statement holds for all positive integers. Also, label the basis, hypothesis, and induction step. 1 + 5 + 9 + … + (4n 3)= n(2n1) 
Mathematical induction. I'm stuck. So far I have..
For all integers n ≥ 1, prove the following statement using mathematical induction. 1+2^1 +2^2 +...+2^n = 2^(n+1) −1 Here's what I have so far 1. Prove the base step let n=1 2^1=2^(1+1)1 False. Someone else suggested that … 
precalculus
Can you please check my answers? 1.Find Pk + 1 if Pk=2^K1/k! answer: 2^k+1/(k+1)! 2.Find Pk + 1 if Pk = 7 + 13 + 19 + ...+[6(k  1)+1] + (6k + 1) answer: 7+13+9...(6k1+1)+6k+1 +(6k+2) 3.What is the first step when writing a proof 
precalculus
Find Pk + 1 if Pk = 7 + 13 + 19 + ...+[6(k  1)+1] + (6k + 1) 7 + 13 + 19 + …+[6(k  1) + 1] + (6k + 1) + [6(k + 1) + 1] 8 + 14 + 20 + …+[7(k  1) + 1] + (7k + 1) 7 + 13 + 19 + …+(6k + 1) 7 + 13 + 19 + ...+[6(k  1) + 1] + (6k7 … 
Mathematical Induction
I have been given that a1 = 1 and an+1 = 1/3*(an + 4). In order to prove that this sequence is monotonous, what is the second step of mathematical induction? 
Mathematical Induction
Use mathematical induction to prove that the following is true. 8+11+14...+(3n+5)=1/2n(3n+13), for all n in the set of natural numbers.