# College Physics

posted by .

A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.

## Similar Questions

1. ### Physics

A 3.60 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.80 m, before compressing a spring of force constant 2.30*10^4 N/m. Find the maximum compression of the spring. Any help would …
2. ### College Physics

A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
3. ### College Physics

A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
4. ### College Physics

A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
5. ### College Physics

A 4.30 kg block starts from rest and slides down a frictionless incline, dropping a vertical distance of 2.60 m, before compressing a spring of force constant 2.20 104 N/m. Find the maximum compression of the spring.
6. ### physics

A 0.50-kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring …
7. ### physics

A 0.50-kg block, starting at rest, slides down a 30.0° incline with kinetic friction coefficient 0.30 (the figure below). After sliding 84 cm down the incline, it slides across a frictionless horizontal surface and encounters a spring …