Calculus

posted by .

Find the volume of the solid obtained by rotating the region bounded by y=x^3, y=1, and the y-axis and whose cross-sections perpendicular to the y axis are equilateral triangles.

I asked this same question for the y-axis around the x-axis (Thanks for the explanation) but I don't get how to solve this one either.

  • Calculus -

    I get 2(sqrt3/2)(1-(3/4)1^(4/3))

    But that's not the answer.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus

    the base of a solid is a region in the first quadrant bounded by the x-axis, the y-axis, and the line y=1-x. if cross sections of the solid perpendicular to the x-axis are semicircles, what is the volume of the solid?
  2. Calculus

    This problem set is ridiculously hard. I know how to find the volume of a solid (integrate using the limits of integration), but these questions seem more advanced than usual. Please help and thanks in advance! 1. Find the volume of …
  3. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  4. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  5. Calculus

    R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
  6. calculus

    Find the volume of the solid whose base is the region bounded between the curve y=sec x and the x-axis from x=pi/4 to x=pi/3 and whose cross sections taken perpendicular to the x-axis are squares.
  7. Calculus

    Find the volume of the solid obtained by rotating the region bounded by y=x^3, y=1, and the y-axis and whose cross-sections perpendicular to the y axis are equilateral triangles. I asked this same question for the y-axis around the …
  8. Calculus

    Find the volume of the solid obtained by rotating the region bounded by y=x^3, y=1, and the y-axis and whose cross-sections perpendicular to the y axis are equilateral triangles. I asked this same question for the y-axis around the …
  9. calculus

    The base of a solid in the xy-plane is the first-quadrant region bounded y = x and y = x2. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid?
  10. Calculus

    The base of a solid in the xy-plane is the first-quadrant region bounded y = x and y = x^2. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid?

More Similar Questions