Calculus
posted by Allison .
Suppose that f(2)=3 and f′(2)=5. Let g(x)=x^3f(x). Evaluate g′(2). Your final answer should be a single number.

g = x^3 f
g' = x^3 f' + 3x^2 f
g'(2) = 8f'(2) + 12f(2)
= 8*5 + 12*3
= 76
Respond to this Question
Similar Questions

PHY 2054
Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × … 
College Physics
Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × … 
calculus
Consider the interval I=[6,7.6]. Break I into four subintervals of length 0.4, namely the four subintervals [6,6.4],[6.4,6.8],[6.8,7.2],[7.2,7.6]. Suppose that f(6)=19, f′(6)=0, f′(6.4)=−0.5, f′(6.8)=−0.1, … 
Calculus
A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 4 9 5 0 5 0 6 9 4 5 5 9 5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0) 
Calculus
A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 4 9 5 0 5 0 6 9 4 5 5 9 5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0) 
Urgent Calculus Help
Let H(x)=F(G(x)) and J(x)=F(x)/G(x). Suppose F(7)=4, F′(7)=−8 G(7)=3, G′(7)=−5 G(2)=7, G′(2)=−2 then H′(2)= J′(7)= 
physics
Consider the two observers O and O′ at the origins of the frames of reference S and S′ respectively, which are in relative motion at constant velocity v along the xaxis as illustrated in figure TMA 1_Fig1. Suppose the … 
calculus
F.(0) (10 puntos posibles) C1 What is limh→0cos(π6+h)−cos(π6)h? 
Physics
An ideal gas starts in state A at temperature T. The gas expands to new volume V by an adiabatic process and its final temperature is T′. What is the relationship between T and T′? 
Math Calc
Suppose f(5)=5, f′(5)=5, g(5)=8, g′(5)=−8, and H(x)=f(x)e^(g(x)). Find the derivative (dH)/(dx) x=5. H′(5)= ___