Calculus

posted by .

Suppose that f(2)=3 and f′(2)=5. Let g(x)=x^3f(x). Evaluate g′(2). Your final answer should be a single number.

  • Calculus -

    g = x^3 f
    g' = x^3 f' + 3x^2 f
    g'(2) = 8f'(2) + 12f(2)
    = 8*5 + 12*3
    = 76

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. PHY 2054

    Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × …
  2. College Physics

    Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × …
  3. calculus

    Consider the interval I=[6,7.6]. Break I into four subintervals of length 0.4, namely the four subintervals [6,6.4],[6.4,6.8],[6.8,7.2],[7.2,7.6]. Suppose that f(6)=19, f′(6)=0, f′(6.4)=−0.5, f′(6.8)=−0.1, …
  4. Calculus

    A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 -4 -9 5 0 5 0 -6 9 -4 5 5 9 -5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0)
  5. Calculus

    A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 -4 -9 5 0 5 0 -6 9 -4 5 5 9 -5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0)
  6. Urgent Calculus Help

    Let H(x)=F(G(x)) and J(x)=F(x)/G(x). Suppose F(7)=4, F′(7)=−8 G(7)=3, G′(7)=−5 G(2)=7, G′(2)=−2 then H′(2)= J′(7)=
  7. physics

    Consider the two observers O and O′ at the origins of the frames of reference S and S′ respectively, which are in relative motion at constant velocity v along the x-axis as illustrated in figure TMA 1_Fig1. Suppose the …
  8. calculus

    F.(0) (10 puntos posibles) C1   What is limh→0cos(π6+h)−cos(π6)h?
  9. Physics

    An ideal gas starts in state A at temperature T. The gas expands to new volume V by an adiabatic process and its final temperature is T′. What is the relationship between T and T′?
  10. Math- Calc

    Suppose f(5)=5, f′(5)=5, g(5)=8, g′(5)=−8, and H(x)=f(x)e^(g(x)). Find the derivative (dH)/(dx) x=5. H′(5)= ___

More Similar Questions