# Calculus

posted by .

If f(x)=(3)/(x^2)
find f′(4).

• Calculus -

f(x) = 3x^-2
f'(x) = 3*(-2)x^-3 = -6/x³
f'(4) = -6/64 = -3/32

## Similar Questions

1. ### PHY 2054

Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × …
2. ### College Physics

Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × …
3. ### calculus

Consider the interval I=[6,7.6]. Break I into four subintervals of length 0.4, namely the four subintervals [6,6.4],[6.4,6.8],[6.8,7.2],[7.2,7.6]. Suppose that f(6)=19, f′(6)=0, f′(6.4)=−0.5, f′(6.8)=−0.1, …
4. ### Calculus

A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 -4 -9 5 0 5 0 -6 9 -4 5 5 9 -5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0)
5. ### Calculus

A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 -4 -9 5 0 5 0 -6 9 -4 5 5 9 -5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0)
6. ### calculus (point me in the right direction please?)

f(x) and f′(x) are continuous, differentiable functions that satisfy f(x)=x^3+4x^2+∫(from 0 to x)(x−t)f′(t) dt. What is f′(5)−f(5)?
7. ### calculus

f(x) and f′(x) are continuous, differentiable functions that satisfy f(x)=x^3+4x^2+∫ (from 0 to x)(x−t)f′(t) dt. What is f′(5)−f(5)?
8. ### Calculus 1

Find the requested derivative using limits a. 𝑓′(-4)if f(x)=sqrt(1-2x) b. 𝑓′(a)if f(x)=(2x+1)/(x+3) c. 𝑓′(x) if f(x)=x^-2
9. ### Calculus

Find the x-coordinates of any relative extrema and inflection point(s) for the function f(x) = 3x^(1/3) + 6x^(4/3). Please use an analysis of f ′(x) and f ′′(x).
10. ### Math- Calc

Suppose f(5)=5, f′(5)=5, g(5)=8, g′(5)=−8, and H(x)=f(x)e^(g(x)). Find the derivative (dH)/(dx) x=5. H′(5)= ___

More Similar Questions