Calculus

posted by .

Let f(x)=sqrt(3+2x)

f′(5)=

  • Calculus -

    f(x) = (3+2x)^(½)
    f'(x) = ½(3+2x)^(-½) * 2 = (3+2x)^(-½)
    f'(5) = (3+10)^(-½) = 1/√13

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    Please look at my work below: Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 …
  2. calculus

    Consider the interval I=[6,7.6]. Break I into four subintervals of length 0.4, namely the four subintervals [6,6.4],[6.4,6.8],[6.8,7.2],[7.2,7.6]. Suppose that f(6)=19, f′(6)=0, f′(6.4)=−0.5, f′(6.8)=−0.1, …
  3. Calculus

    A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 -4 -9 5 0 5 0 -6 9 -4 5 5 9 -5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0)
  4. Calculus

    A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 -4 -9 5 0 5 0 -6 9 -4 5 5 9 -5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0)
  5. calculus (point me in the right direction please?)

    f(x) and f′(x) are continuous, differentiable functions that satisfy f(x)=x^3+4x^2+∫(from 0 to x)(x−t)f′(t) dt. What is f′(5)−f(5)?
  6. calculus

    f(x) and f′(x) are continuous, differentiable functions that satisfy f(x)=x^3+4x^2+∫ (from 0 to x)(x−t)f′(t) dt. What is f′(5)−f(5)?
  7. Urgent Calculus Help

    Let H(x)=F(G(x)) and J(x)=F(x)/G(x). Suppose F(7)=4, F′(7)=−8 G(7)=3, G′(7)=−5 G(2)=7, G′(2)=−2 then H′(2)= J′(7)=
  8. physics

    Consider the two observers O and O′ at the origins of the frames of reference S and S′ respectively, which are in relative motion at constant velocity v along the x-axis as illustrated in figure TMA 1_Fig1. Suppose the …
  9. Calculus 1

    Find the requested derivative using limits a. 𝑓′(-4)if f(x)=sqrt(1-2x) b. 𝑓′(a)if f(x)=(2x+1)/(x+3) c. 𝑓′(x) if f(x)=x^-2
  10. Calculus

    Find the x-coordinates of any relative extrema and inflection point(s) for the function f(x) = 3x^(1/3) + 6x^(4/3). Please use an analysis of f ′(x) and f ′′(x).

More Similar Questions