Calculus

posted by .

How many terms are required in the series (-6) + (-12) + (-24)... to add to a sum of -378?

How do I do this?

  • Calculus -

    looks like a geometric series where
    a = -6 and r = 2
    Term(n) = a(r^n - 1)/(r-1), where n is the number of terms
    -378 = -6(2^n - 1)/(2-1)
    63 = 2^n - 1
    64 = 2^n
    I know that 2^6 = 64
    so n=6

    so you need 6 terms.

  • Calculus -

    Thank you so much, could you please help me with my other calculus posts.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    the sum of the first n terms of an arithmetic series is -51. the series has a constant difference of -1.5 and a first term of four. Find the number of terms in the sum I find using an EXCEL spreadsheet is very helpful for these types …
  2. calculus

    find the sum of the series from n=1 to infinity of 2^n/n! do I just look at the sum of the terms?
  3. calculus infinate sums

    how many terms of the series 1/(n*(ln(n)^8)) from n=2 to infinity would you have to add to find the sum to within 0.01
  4. FUNCTION 11..HELP!

    The sun of the first five terms of a geometric series is 186 and the sum of the first six terms is 378. if the fourth term is 48, determine a,r, t10, S10
  5. Geometric series

    The sum of the first five terms of a geometric series is 186 and the sum of the first six terms is 378. if the fourth term is 48, determine a(first term),r(ratio), t10, S10.
  6. Math question

    In an arithmetic series, the 15th term is 43 and the sum of the first 15 terms is 120. Add the first 20 terms of the series.
  7. math

    sorry for before it is my first time using this website and this is the real question in a geometric series t1=23,t3=92 and the sum of all of the terms of the series is 62813. How many terms are in the series?
  8. math help

    the sum of the first two terms in a geometric series is 12. the sum of the first three terms of the same series is 62. determine the first four terms of the series.
  9. Pre-calculus

    The sum of the first two terms of an arithmetic series is 13 and the sum of the four terms is 46. Determine the first six terms of the series and the sum of the first six terms.
  10. Arithmetic

    A geometric series has a positive common ratio of r. The series has a sum to infinity of 9 and the sum of the first two terms is 5. Find the first four terms of the series.

More Similar Questions