Calculus
posted by Cad .
Can someone please tell me how to find the following integral?
cos^4(2q)*sin(2q) dq

If z=cos(2q) then dz=2sin(2q)dq.
Integral=1/2*Integral z^4dz=
1/10*z^5+C
Respond to this Question
Similar Questions

trig integration
s integral endpoints are 0 and pi/2 i need to find the integral of sin^2 (2x) dx. i know that the answer is pi/4, but im not sure how to get to it. i know: s sin^2(2x)dx= 1/2 [1cos (4x)] dx, but then i'm confused. The indefinite … 
algebra
Can someone please help me do this problem? 
Integral
That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = cos x du = cos x dx The integral is u v  integral of v du = sinx cosx + integral of cos^2 dx which can be rewritten integral … 
Calculus
I have two questions, because I'm preparing for a math test on monday. 1. Use the fundamental theorem of calculus to find the derivative: (d/dt) the integral over [0, cos t] of (3/5(u^2))du I have a feeling I will be able to find … 
trig
The expression 4 sin x cos x is equivalent to which of the following? 
Calculus  MathMate Please help
ok, i tried to do what you told me but i cant solve it for c because they cancel each others out! the integral for the first one i got is [sin(c)cos(x)cos(c)sin(x)+sin(x)+c] and the integral for the 2nd one i got is [sin(c)cos(x)+cos(c)sin(x)sin(x)+c] … 
calc
find integral using table of integrals ) integral sin^4xdx this the formula i used integral sin^n xdx =1/n sin^n1xcosx +n1/n integral sin^n2 using the formula this is what i got: integral sin^4xdx=1/4sin^3xcosx+3/4 integral sin^2xdx= … 
Calculus 12th grade (double check my work please)
1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.2 sin 2x B.2 sin 2x / sinh 3y C.2/3tan (2x/3y) D.2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) … 
Calculus
Evaluate the integral. S= integral sign I= absolute value S ((cos x)/(2 + sin x))dx Not sure if I'm doing this right: u= 2 + sin x du= 0 + cos x dx = S du/u = ln IuI + C = ln I 2 + sin x I + C = ln (2 + sin x) + C Another problem: … 
Integration by Parts
integral from 0 to 2pi of isin(t)e^(it)dt. I know my answer should be pi. **I pull i out because it is a constant. My work: let u=e^(it) du=ie^(it)dt dv=sin(t) v=cos(t) i integral sin(t)e^(it)dt= e^(it)cos(t)+i*integral cost(t)e^(it)dt …