Respond to this Question
Similar Questions

ALGEBRA
(a) Write the expression in terms of natural logarithms. (Express all logarithmic functions in terms of ln(x) in your answer.) log_(8.5) \(127\) = Give a calculator approximation (correct to four decimal places). log_(8.5) \(127\) … 
ALGEBRA
Evaluate the given expressions (to two decimal places). (a) log((23.0) ((b) log_(2) \(128\) text((c) ) log_(9) \(1\) 
ALGEBRA
Use the definition of logarithm to simplify each expression. (a) )log_(3b) \(3b\) ((b) )log_(8b) \((8b)^6\) (c) )log_(10b) \((10b)^(13)\) 
ALGEBRA
Evaluate the given expressions (to two decimal places). (a) ) log((23.0) (b) ) log_(2) \(128\) (c) ) log_(9) \(1\) 
ALGEBRA
Use the definition of logarithm to simplify each expression. text((a) )log_(3b) \(3b\) text((b) )log_(4b) \((4b)^6\) text((c) )log_(7b) \((7b)^(11)\) 
ALGEBRA
(a) Write the expression in terms of natural logarithms. (Express all logarithmic functions in terms of ln(x) in your answer.) log_(8.9) \(135\) = (b) Give a calculator approximation (correct to four decimal places). log_(8.9) \(135\) … 
math
Prove. 3/(log_2 (a))  2/(log_4 (a)) = 1/(log_(1/2)(a)) 
math
Prove: 3/(log_2 (a))  2/(log_4 (a)) = 1/(log_(1/2)(a)) 
Trigonometry
Every point (x,y) on the curve y = \log_{2}{3x} is transferred to a new point by the following translation (x',y') =(x+m,y+n), where m and n are integers. The set of (x',y') form the curve y = \log_{2}{(12x96)} . What is the value … 
algebra
Let $x$, $y$, and $z$ be positive real numbers that satisfy \[2 \log_x (2y) = 2 \log_{2x} (4z) = \log_{2x^4} (8yz) \neq 0.\] The value of $xy^5 z$ can be expressed in the form $\frac{1}{2^{p/q}}$, where $p$ and $q$ are relatively prime …