Grade 12 University physics
posted by Alex .
A 1.2kg block is dropped from 48cm above a spring in equilibrium. The force constant for the spring is 124N/m. Calculate the maximum compression in the spring.

Grade 12 University physics 
SraJMcGin
You might try some of the following links:
http://search.yahoo.com/search?fr=mcafee&p=how+to+calculate+maximum+compression%2C+Physics
Sra 
Grade 12 University physics 
drwls
If X is maximum spring compression, and H is the height from which the block falls (0.48 m), conservation of energy tell you that
M g (H + X) = (1/2) k X^2
where k is the spring's force constant.
Solve for X
Take the positive root of the resulting quadratic equation.
Respond to this Question
Similar Questions

Physics
A vertical spring with a spring constant of 450 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed … 
Physics. Urgent
A vertical spring with a spring constant of 450 N/m is mounted on the floor. From directly above the spring, which is unstrained, a 0.30 kg block is dropped from rest. It collides with and sticks to the spring, which is compressed … 
Physics
A 290 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.6 N/cm. The block becomes attached to the spring and compresses the spring 10 cm before momentarily stopping. (a) While the spring is being … 
physics
A solid block of mass m2 = 8.3 kg, at rest on a horizontal frictionless surface, is connected to a relaxed spring. The other end of the spring is fixed, and the spring constant is k = 210 N/m. Another solid block of mass m1 = 12.4 … 
Physics
A block of mass M=6 kg and initial velocity v=0.8m/s slides on a frictionless horizontal surface and collides with a relaxed spring of unknown spring constant. The other end of the spring is attached to a wall. If the maximum compression … 
Physics
Problem 4: A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of k= 2.5 N/cm. The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is … 
Physics
A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much work … 
Physics
A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much work … 
Physics please help?????
A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much work … 
Physics
A 263g block is dropped onto a vertical spring with force constant k = 2.52N/cm. The block sticks to the spring, and the spring compress 11.8 cm before coming momentarily to rest. while the spring is being compressed, how much work …