# Class 12th Calculus

posted by .

If y = e^x cosx, prove that dy/dx sqrt(2) e^x . cos(x+ pie/4)

• Class 12th Calculus -

The simple dy/dx = e^x(-sinx) + e^xcosx
= e^x(cosx - sinx)

RS = √2(e^x)(cos(x+π/4)
= √2(e^x)(cosxcosπ/4 - sinxsinπ/4)
= √2(e^x)(cosx(1/√2 - sinx(1/√2)
= e^x (cosx - sinx)

= the dy/dx from above

## Similar Questions

1. ### Trig

prove the identity (sinX)^6 +(cosX)^6= 1 - 3(sinX)^2 (cosX)^2 sinX^6= sinx^2 ^3 = (1-cosX^2)^3 = (1-2CosX^2 + cos^4) (1-cosX^2) then multiply that out 1-2CosX^2 + cos^4 - cosX^2 + 2cos^4 -cos^6 add that on the left to the cos^6, and …
2. ### Pre-Calc

Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
3. ### Calculus

Please look at my work below: Solve the initial-value problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1) r=(16 +/- Sqrt(-8)) r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 …
4. ### Calculus

Find the derivative of cos(sqrt(e^(x^3)cos(x)) I got -sin(sqrt(e^(x^3)cos(x))*((sqrt(e^(x^3)cos(x)) Do I just leave the e^(x^3)cosx alone since it's "e" or do I still have the find the derivative for it?
5. ### Calc II

For the following question, we need to find the length of the polar curve: r= 2/(1-cosx) from pi/2 </= x </= pi dr/dx= -2sinx/(1-cosx)^2 therefore the length would be expressed as follows: the integral from pi/2 to pi of (sqrt)[(2/(1-cos))^2 …
6. ### RESPONSE to PreCalc Question

h t t p : / / w w w . j i s k h a . c o m / d i s p l a y . c g i ?
7. ### Class 12th : Calculus

If y = sqrt(x-1)+sqrt(x+1),prove that sqrt(x^2-1)dy/dx=1y/2
8. ### Calculus

solve this equation on the given interval expressing the solution for x in terms of inverse trigonometric functions. 6(cosx)^2-cosx-5=0 on (pie/2, pie)
9. ### Geometry

Find 2 cos(x/2) sin(x/2) when x = -π/6. I know that cos(x/2) = +- sqrt(1-cosx)/2 and sin(x/2) = +- sqrt(1+cosx)/2, but how to use this identity I'm not entirely sure. Please help.
10. ### Pre-calculus

Prove the following identities. 1. 1+cosx/1-cosx = secx + 1/secx -1 2. (tanx + cotx)^2=sec^2x csc^2x 3. cos(x+y) cos(x-y)= cos^2x - sin^2y

More Similar Questions