physics

posted by .

Does increasing the tension of the string affect the wavelength of the fundamental standing wave on a guitar string?

Plese show all work

Thank you

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. PHYSICS PLEASE HELP

    This question has two parts: First: A typical steel B-string in a guitar resonates at its fundamental frequency at 240 Hertz. The length of the string is 0.640 m. What is the wave velocity along the string?
  2. Physics

    Let's consider some of the things that affect the velocity of a standing wave on a string: decide whether each of the following statements are T-True, or F-False. (If the first is T and the rest are F, enter TFFFF) A) The velocity …
  3. Simple Physics

    Decide whether each of the following statements are T-True, or F-False. (If the first is T and the rest are F, enter TFFFF) A) If you decrease the tension in a string, the frequency of its fundamental vibration will get lower B) If …
  4. PHYSICS

    Decide whether each of the following statements are T-True, or F-False. A) If you increase the tension in a string, the frequency of its fundamental vibration will get lower B) If the fundamental vibration of a string has wavelength …
  5. Physics

    SEQUENCE of questions: 1)A typical steel B-string in a guitar resonates at its fundamental frequency at 240 Hertz. The length of the string is 0.620 m. What is the wave velocity along the string?
  6. physics

    Given the information which statements are true or false?
  7. physics

    I have to figure out if the following are true or false in order to solve an equation. But I am getting at least two wrong so I can't get the next one right. A)If you increase the tension in a string, the frequency of its fundamental …
  8. Physics

    The guitar is a musical instrument of the chordophone family, being a stringed instrument played by plucking. The tone of an acoustic guitar is produced by the vibration of the strings. Guitar spring (made out of steel) has length …
  9. Physics

    Waves of all wavelengths travel at the same speed v on a given string. Traveling wave velocity and wavelength are related by v=lambda*f,where v is the wave speed, lambda is the wavelength (in meters), and f is the frequency [in hertz]. …
  10. Physics- PLEASE HELP

    A 60.00 cm guitar string under a tension of 46.000 N has a mass per unit length of 0.11000 g/ cm. (a) What is the speed of the wave?

More Similar Questions