Physics Urgent!!!!!
posted by Abi .
Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational constant G can be determined by directly measuring the interaction force in the late 18th century by the English scientis Henry Cavendish. This apparatus was a torsion balance consisting of a 6.00ft wooden rod suspended from a torsion wire, with a lead sphere having a diameter of 2.00 in and a weight of 1.61 lb attached to each end. Two 12.0in, 348lb lead balls were located near the smaller balls, about 9.00 in away, and held in place with a separate suspension system. Today’s accepted value for G is 6.674E11 m^3 kg^1s^2.
a) Determine the force of attraction between the larger and smaller balls that had to be measured by this balance.
b) Compare this force to the weight of the small balls.
Ok... so for the first one I have to use the equation given and change the values to kilograms and meters, and use the radii instead of the diameters, this is what I know, but I don't know how to do it when there are three spheres (the big one and the 2 small ones)... I don't get what they are asking for the second part...
Someone please help, it will be deeply appreciated...
Respond to this Question
Similar Questions

Physics Urgent!!
Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational constant G can be determined by directly measuring the … 
Physics Urgent!!
Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational constant G can be determined by directly measuring the … 
Physics Urgent!!!!!
Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational constant G can be determined by directly measuring the … 
Physics Urgent!!!!!
Sorry to repost this, again, but I still don't understand. Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational … 
Physics (please help!!!!)
Sorry to repost this, again, but I still don't understand. Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational … 
Physics (please help!!!!)
Sorry to repost this, again, but I still don't understand. Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational … 
Physics (please help!!!!)
Sorry to repost this, again, but I still don't understand. Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational … 
Physics Urgent!!!!! I really need help with this
Sorry to repost this, again, but I still don't understand. Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational … 
Physics Urgent!!!!! I really need help with this
Sorry to repost this, again, but I still don't understand. Newton’s Law of Gravity specifies the magnitude of the interaction force between two point masses, m1 and m2, separated by the distance r as F(r) = Gm1m2/r^2. The gravitational … 
Physics
In mathematical language, Newton's Law of Gravity expresses the force of gravity, F, between two objects in the following way: F= (GMm)/r^2 where M is the mass of one object, m is the mass of the other object, r is the distance between …