# pre calc

posted by .

cos2x=cosx in interval of [0,2pie]

• pre calc -

cos2x-cosx=0
expand the left hand side
cos²(x)-sin²(x)-cos(x)=0
2cos²(x)-1 - cos(x)=0
substitute c=cos(x)
2c²-c-1=0
c=(-1±√(9))/4
=-1 or 1/2
cos(x)=-1 when x=π (0≤x≤2π)
or
cos(x)=1/2 when x=π/3 or x=5π/3 (0≤x≤2π)

Substitute each of the three solution into the original equation to make sure that the solutions are acceptable.

• pre calc -

Reiny is right.
There was a mistake in the solution of the quadratic.

c=(1±√(9))/4
=1 or -1/2
cos(x)=1 when x=0 or 2π (0≤x≤2π)
or
cos(x)=-1/2 when x=π±π/3 (0≤x≤2π)

Substitute each of the three solution into the original equation to make sure that the solutions are acceptable.

## Similar Questions

1. ### Pre-Calc

Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
2. ### pre-calc

Solve: cos(2x-180) - sin(x-90)=0 my work: cos2xcos180 + sin2xsin180= sinxcos90 - sin90cosx -cos2x - sin2x= cosx -cos^2x + sin^2x -2sinxcosx=cosx I'm stuck here. I tried subtracting cosx from both sides and making sin^2x into 1- cos^2x, …

Solve the equation of the interval (0, 2pi) cosx=sinx I squared both sides to get :cos²x=sin²x Then using tri indentites I came up with cos²x=1-cos²x Ended up with 2cos²x=1 Would the answer be cos²x=1/2?
4. ### Pre Calc

Solve the equation on the interval [0,2pi). cos2x=(*2/2)
5. ### Pre Calc

Solve the equation on the interval [0,2pi). cos2x=(*2/2)
6. ### Trigonometry

Solve for x in the interval 0<=x<360: 1. 2sin2x+cosx =0 2. cos2x=-2sinx 3. tanx=2sinx 4. 3cos2x+cosx+2=0
7. ### identities trig?

find all solutions to the equation in the interval [0,2pie] cos2x=cosx
8. ### Pre calc

Find solutions on interval 0,2pie (cosx/1+sinx) + (1+sinx/cosx) = -4
9. ### Pre-Calculus

Find all solutions to the equation in the interval [0, 2pi) cos4x-cos2x=0 So,this is what i've done so far: cos4x-cos2x=0 cos2(2x)-cos2x (2cos^2(2x)-1)-(2cos^2(x)-1) No idea what to do next.
10. ### Precalculus

Please help!!!!!!!!!!! Find all solutions to the equation in the interval [0,2π). 8. cos2x=cosx 10. 2cos^2x+cosx=cos2x Solve algebraically for exact solutions in the interval [0,2π). Use your grapher only to support your …

More Similar Questions