Trig

posted by Anonymus

Use Trig identities to verify that sec^4(x)-tan^4(x)=1+2tan^2(x), Only work with one side of the equation

  1. agrin04

    sec^4(x) - tan^4(x) =
    = (1 + tan^2(x))^2 - tan^4(x)
    = 1 + 2tan^2(x) + tan^4(x) - tan^4(x)
    = 1 + 2tan^2(x)

    QED

Respond to this Question

First Name

Your Answer

Similar Questions

  1. Trigonometry

    Use the trig Identities to find the other 5 trig functions. Problem 7.)Tan(90-x)=-3/8 8.)Csc x=-13/5 9.)Cot x=square root of 3 10.)Sin(90-x)=-.4563 11.)Sec(-x)=4 12.)Cos x=-.2351 I need HELP!
  2. trig

    Prove: sec*4x-tan*4x=1+2tan*2x
  3. Math

    Prove Trig. Identities 1. sec è (sec è - cos è)= tan^2 è 2. tan^2 è (1 + cot^2 è) = sec^2 è
  4. trig

    Verify that each trigonometric equation is an identity tan^2+1/sec α =sec α
  5. pre calculus 2

    use the fundamental trig. Identities to simplify tan^4x+2tan^2x+1
  6. Trig

    Proving Identities: 2 columns (tan + cot)^2 = sec^2 + csc^2 I'm having trouble breaking down the left side to = the right side.. Any help please
  7. trig

    prove: (tan x + sec x)^2 = 2sec^2 x + 2tan x sec x - 1
  8. calculus (check my work please)

    Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)-1) dx ∫ tan(x)sec(x)[sec^4(x)-sec^2(x)] …
  9. Trig

    Verify each trigonimetric equation by substituting identities to match right hand side of the equation to the hand side of the equation. Please help. -tan^2x+sec^2x=1
  10. Trig Identities

    Prove the following identities: 13. tan(x) + sec(x) = (cos(x)) / (1-sin(x)) *Sorry for any confusing parenthesis.* My work: I simplified the left side to a. ((sinx) / (cosx)) + (1 / cosx) , then b. (sinx + 1) / cosx = (cos(x)) / (1-sin(x)) …

More Similar Questions