Post a New Question


posted by .

Why do you use 1/3 in volume formulas?

  • geometry -

    any solid that comes to a vertex or point has the formula
    V = (1/3) (base area) x (height)

    I you know Calculus you could take the region bounded by the x-axis, the y-axis and a line with x-intercept of h and y-intercept of r and rotate it about the x-axis

    The result will be a cone with radius r and height h
    the equation of that line is
    y = (-r/h)x + r

    the generated volume
    = π[integral]y^2 dx
    = π[integral] (r^2x^2/h^2 - 2r^2x/h + r^2) dx
    = π [r^2x^3/(3h^2) - r^2x^2/h + r^2x] from 0 to h
    = π(r^2h/3 - r^2h + r^2h - 0)
    = π(r^2)(h)/3
    = (1/3)(πr^2)(h) or (1/3)basearea x height

    When I was still teaching, I had a cylinder and a cone, both with the same radius and height.

    In class we would fill the cone with water and pour it into the cylinder, and do that until the cylinder was full.
    We were able to fill and pour THREE times, showing that the volume of the cone was
    (1/3) of the volume of the cylinder.

    volume of cylinder = πr^2h
    volume of cone = (1/3)πr^2h

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

More Related Questions

Post a New Question