physics help please!
posted by Hannah .
A spacecraft is on a journey to the moon. At what point, as measured from the center of the earth, does the gravitational force exerted on the spacecraft by the earth balance that exerted by the moon? This point lies on a line between the centers of the earth and the moon. The distance between the earth and the moon is 3.85 × 108 m, and the mass of the earth is 81.4 times as great as that of the moon.

physics help please! 
tchrwill
The Law of Universal Gravitation states that each particle of matter attracts every other particle of matter with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. Expressed mathematically,
F = GM(m)/r^2
where F is the force with which either of the particles attracts the other, M and m are the masses of two particles separated by a distance r, and G is the Universal Gravitational Constant. The product of G and, lets say, the mass of the earth, is sometimes referred to as GM or mu (the greek letter pronounced meuw as opposed to meow), the earth's gravitational constant. Thus the force of attraction exerted by the earth on any particle within, on the surface of, or above, is F = 1.40766x10^16 ft^3/sec^2(m)/r^2 where m is the mass of the object being attracted and r is the distance from the center of the earth to the mass.
The gravitational constant for the earth, GM(E), is 1.40766x10^16ft^3/sec^2. The gravitational constant for the moon, GM(M), is 1.7313x10^14ft^3/sec^2. Using the average distance between the earth and moon of 239,000 miles, let the distance from the moon, to the point between the earth and moon, where the gravitational pull on a 32,200 lb. satellite is the same, be X, and the distance from the earth to this point be (239,000  X). Therefore, the gravitational force is F = GMm/r^2 where r = X for the moon distance and r = (239000  X) for the earth distance, and m is the mass of the satellite. At the point where the forces are equal, 1.40766x10^16(m)/(239000X)^2 = 1.7313x10^14(m)/X^2. The m's cancel out and you are left with 81.30653X^2 = (239000  X)^2 which results in 80.30653X^2 + 478000X  5.7121x10^10 = 0. From the quadratic equation, you get X = 23,859 miles, roughly one tenth the distance between the two bodies from the moon. So the distance from the earth is ~215,140 miles.
Checking the gravitational pull on the 32,200 lb. satellite, whose mass m = 1000 lb.sec.^2/ft.^4. The pull of the earth is F = 1.40766x10^16(1000)/(215,140x5280)^2 = 10.91 lb. The pull of the moon is F = 1.7313x10^14(1000)/(23858x5280)^2 = 10.91 lb.
This point is sometimes referred to as L2. There is an L5 Society which supports building a space station at this point between the earth and moon. There are five such points in space, L1 through L5, at which a small body can remain in a stable orbit with two very massive bodies. The points are called Lagrangian Points and are the rare cases where the relative motions of three bodies can be computed exactly. In the case of a body orbiting a much larger body, such as the moon about the earth, the first stable point is L1 and lies on the moon's orbit, diametrically opposite the earth. The L2 and L3 points are both on the moonearth line, one closer to the earth than the moon and the other farther away. The remaining L4 and L5 points are located on the moon's orbit such that each forms an equilateral triangle with the earth and moon.
Respond to this Question
Similar Questions

Physics
The average distance separating Earth and the Moon (center to center) is 384 000 km. Use the data in Table 7.3 to find the net gravitational force exerted by Earth and the Moon on a 3.00 multiplied by 104 kg spaceship located halfway … 
physics
magine a straight line connecting the centers of the earth and the moon. At some point along this line the gravitational forces pulling a spacecraft towards the moon and towards the earth exactly balance each other, and the craft could … 
physics
Calculate the magnitudes of the gravitational forces exerted on the Moon by the Sun and by the Earth when the two forces are in direct competition, that is, when the Sun, Moon, and Earth are aligned with the Moon between the Sun and … 
physics
In the Earth–Moon system, there is a point where the gravitational forces balance. This point is known as the L1 point where the L stands for Lagrange, a famous French mathematician. Assume that the mass of the Moon is 1/81 that … 
physics
When a spacecraft travels from Earth to the Moon, the gravitational force from Earth initially opposes this journey. Eventually, the spacecraft reaches a point where the Moon's gravitational attraction overcomes the Earth's gravity. … 
Physics
When a spacecraft travels from the Earth to the Moon, both the Earth and the Moon exert a gravitational force on the spacecraft. Eventually, the spacecraft reaches a point where the Moon's gravitational attraction overcomes the Earth's … 
physics
Consider a spacecraft that is to be launched from the Earth to the Moon. Calculate the minimum velocity needed for the spacecraft to just make it to the Moon’s surface. Ignore air drag from the Earth’s atmosphere. Hint: The spacecraft … 
physics
Consider a spacecraft that is to be launched from the Earth to the Moon. Calculate the minimum velocity needed for the spacecraft to just make it to the Moon’s surface. Ignore air drag from the Earth’s atmosphere. Hint: The spacecraft … 
physics
A spacecraft is on a journey to the moon. At what point, as measured from the center of the earth, does the gravitational force exerted on the spacecraft by the earth balance that exerted by the moon? 
Physics
The earth has about 80 times the mass of the earth’s moon. The gravitational force exerted on the moon by the earth has what relation to the gravitational force exerted on the earth by the moon?