Calculus

posted by .

A function f(x) is said to have a removable discontinuity at x=a if:
1. f is either not defined or not continuous at x=a.
2. f(a) could either be defined or redefined so that the new function IS continuous at x=a.


--------------------------------------------------------------------------------
Let
Show that f(x) has a removable discontinuity at x=−7 and determine what value for f(−7) would make f(x) continuous at x=−7.
Must redefine f(−7)=_____________.
Now for fun, try to graph f(x). It's just a couple of parabolas!

  • Calculus-incomplete -

    f(x) is not given.

    As an example, if f(x) is defined as follows:
    f(x)=x² for x<0, and
    f(x)=2x² for x>0.
    Graph f(x) and you will find x=0 is undefined.
    Since Lim f(x) x->0- equals Lim f(x) x->0+, we say that there is a removable discontinuity at x=0. The discontinuity can be removed by redefining f(x).

  • Calculus -

    I'm sorry, I was having some problems posting the questions....

    Again
    Let

    f(x)= mx-12 if x is less than -5
    x^2 +5x - 7 if x is greater than -5
    Show that f(x) has a removable discontinuity at x=−7 and determine what value for f(−7) would make f(x) continuous at x=−7.
    Must redefine f(−7)=_____________.

  • Calculus -

    OK I made a mistake... AGAIN fx is not equal to that sorry. I will repost this question.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus please help!

    Which of the following functions f has a removable discontinuity at a?
  2. Calculus

    A function f(x) is said to have a removable discontinuity at x=a if: 1. f is either not defined or not continuous at x=a. 2. f(a) could either be defined or redefined so that the new function IS continuous at x=a. Let f(x)=2x^2+3x–14/x–2 …
  3. Calculus

    A function f(x) is said to have a removable discontinuity at x=a if: 1. f is either not defined or not continuous at x=a. 2. f(a) could either be defined or redefined so that the new function IS continuous at x=a. Let f(x)=2x^2+3x–14/x–2 …
  4. calculus

    A function f(x) is said to have a removable discontinuity at x=a if: 1. f is either not defined or not continuous at x=a. 2. f(a) could either be defined or redefined so that the new function IS continuous at x=a. Let f(x)= x2+10x+26 …
  5. Calculus

    A function f(x) is said to have a removable discontinuity at x=a if: 1. f is either not defined or not continuous at x=a. 2. f(a) could either be defined or redefined so that the new function IS continuous at x=a. -------------------------------------------------------------------------------- …
  6. Calculus

    Suppose g(x) = { 1 / (x - 2) if x < 1 2x - 4 if x >/= 1 The best description concerning the continuity of g(x) is that the function A.) is continuous B.) has a jump discontinuity C.) has an infinite discontinuity D.) has a removable …
  7. Calculus - #2

    Suppose g(x)={x^2+2x+1/x+1 if x<1 {2x if x≥1 The best description concerning the continuity of g(x) is that the function: is continuous. has a jump discontinuity. has an infinite discontinuity. has a removable discontinuity. …
  8. Calculus - #3

    Suppose g(x)={1/(x-2) if x<1 {2x-3 if x≥1 The best description concerning the continuity of g(x) is that the function: is continuous. has a jump discontinuity. has an infinite discontinuity. has a removable discontinuity. …
  9. Calculus - #4

    Suppose g(x)={1/(x-2) if x<1 {2x-4 if x≥1 The best description concerning the continuity of g(x) is that the function: is continuous. has a jump discontinuity. has an infinite discontinuity. has a removable discontinuity. …
  10. Calculus-Help Please

    Find a function f(x), perhaps a piecewise function that is defined but not continuous on (-infinity, infinity) for which the function lf(x)l is both defined and continuous on (-infinity, infinity). f(x)= lf(x)l =

More Similar Questions