Trigonometry

posted by .

Verify the identity: cos x + sin x tan x = sec x.

• Trigonometry -

LS = cosx + sinx(sinx/cosx)
= (cos^2x + sin^2x)/cosx
= 1/cosx
= sec x
= RS

Similar Questions

1. Integration

Intergrate ¡ì sec^3(x) dx could anybody please check this answer. are the steps correct?
2. Trigonometry

How do you verify the equation is an identity?
3. Algebra2 Verify Identity

Verify the Identity: csc(x)+sec(x)/sin(x)+cos(x)=cot(x)+tan(x) the left side of the equation is all one term.
4. Pre-calc

Verify this identity. How would you prove it (sin^3(x)+cos^3(x))÷(1-2cos^2(x)) = (sec(x)-sin(x))÷(tan(x)-1)
5. Trigonometry

1.Solve tan^2x + tan x – 1 = 0 for the principal value(s) to two decimal places. 6.Prove that tan y cos^2 y + sin^2y/sin y = cos y + sin y 10.Prove that 1+tanθ/1-tanθ = sec^2θ+2tanθ/1-tan^2θ 17.Prove that …
6. trigonometry help me

6.Prove that tan y cos^2 y + sin^2y/sin y = cos y + sin y 10.Prove that 1+tanθ/1-tanθ = sec^2θ+2tanθ/1-tan^2θ 17.Prove that sin^2w-cos^2w/tan w sin w + cos w tan w = cos w-cot w cos w 23.Find a counterexample …
7. Trigonometry

Verify/Solve the identities. 1.) SIN^1/2 X COS X-SIN^5/2 X COS X 2.) Long problem, but it's fun to solve! SEC^6 X(SEC X TAN X)-SEC^4 X(SEC X TAN X)
8. precalculus

For each of the following determine whether or not it is an identity and prove your result. a. cos(x)sec(x)-sin^2(x)=cos^2(x) b. tan(x+(pi/4))= (tan(x)+1)/(1-tan(x)) c. (cos(x+y))/(cos(x-y))= (1-tan(x)tan(y))/(1+tan(x)tan(y)) d. (tan(x)+sin(x))/(1+cos(x))=tan(x) …
9. Trigonometry desperate help, clueless girl here

2. solve cos 2x-3sin x cos 2x=0 for the principal values to two decimal places. 3. solve tan^2 + tan x-1= 0 for the principal values to two decimal places. 4. Prove that tan^2(x) -1 + cos^2(x) = tan^2(x) sin^2 (x). 5.Prove that tan(x) …
10. Pre-Calculus

Verify the identity. cos x - sec x = -sin x tan x So far I have applied a reciprocal identity =cos x - 1/cos x I know I must combine using the least common denominator but I don't know how it would be written.

More Similar Questions