Linear Algebra, orthogonal
posted by Kay .
The vector v lies in the subspace of R^3 and is spanned by the set B = {u1, u2}. Making use of the fact that the set B is orthogonal, express v in terms of B where,
v = 1
2
13
B = 1 1
2 , 1
3 1
v is a matrix and B is a set of 2 matrices
Respond to this Question
Similar Questions

math
There is one step in a proof that I don't understand. Could someone please explain? 
math
Prove that if A is a symmetric n x n matrix, then A has a set of n orthonormal eigenvectors. http://ltcconline.net/greenl/courses/203/MatrixOnVectors/symmetricMatrices.htm I've read the entire page and while it's on the correct topic, … 
math
Find an orthonormal basis for the subspace of R^3 consisting of all vectors(a, b, c) such that a+b+c = 0. The subspace is twodimensional, so you can solve the problem by finding one vector that satisfies the equation and then by constructing … 
Math
Mark each of the following True or False. ___ a. All vectors in an orthogonal basis have length 1. ___ b. A square matrix is orthogonal if its column vectors are orthogonal. ___ c. If A^T is orthogonal, then A is orthogonal. ___ d. … 
Linear Algebra
1/ Prove that the set V=R+ ( the set of all positive real numbers) is a vector space with the following nonstandard operations: for any x,y belong to R+ & for any scalar c belong to R: x O+ ( +signal into circle) y=x.y (definition … 
Linear Algebra
Knowing u = (4,0,3), v = (x,3,2) and that the orthogonal projection of v on u is a vector of norm 6, determine x. Thank you 
Math
I'm doing a bunch of practice finals and I don't know how to approach this problem. Find a vector a such that a is orthogonal to < 1, 5, 2 > and has length equal to 6. If I want to find a vector that is orthogonal to <1,5,2>, … 
Math Elementary Linear Algebra
determine whether or not the given set forms a basis for the indicated subspace: #1 {1,1,0), (1,1,1)} for the subspace of R^3 of all (x,y,z) such that y= x+z #2 {[1,2,1,3), (0,0,0,0)} for the subspace of R^4 of all vectors of the … 
linear algebra
Hello, how can I proof the next theorem? I have a linear transformation T(X) that can be express as T(X)=AX and A is an orthogonal matrix, then T (X)=X , I was doing this: T (X)=sqrt(<AX,AX>) But I don't know what 
Linear Algebra
Hi, I really need help with these True/False questions: (a) If three vectors in R^3 are orthonormal then they form a basis in R^3. (b) If Q is square orthogonal matrix such that Q^2018 = I then Q^2017 = Q^T. (c) If B is square orthogonal …