Physics

posted by .

Two masses are suspended from a pulley as shown in the figure . The pulley itself has a mass of 0.30 kg, a radius of 0.20 m, and a constant torque of 0.30 m \cdot N due to the friction between the rotating pulley and its axle.

What is the magnitude of the acceleration of the suspended masses if m_1 = 0.40 kg and m_2 = 0.90 kg ? (Neglect the mass of the string.)

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    The two masses (m1 = 5.0 kg and m2 = 3.0 kg) in the Atwood's machine shown in Figure 10-23 are released from rest, with m1 at a height of 0.87 m above the floor. When m1 hits the ground its speed is 1.4 m/s. Assume that the pulley …
  2. Physics

    The two masses (m1 = 5.0 kg and m2 = 3.0 kg) in the Atwood's machine shown in Figure 10-23 are released from rest, with m1 at a height of 0.91 m above the floor. When m1 hits the ground its speed is 1.5 m/s. Assume that the pulley …
  3. Physics

    Two masses are suspended from a pulley as shown in the figure . The pulley itself has a mass of 0.30 kg, a radius of 0.20 m, and a constant torque of 0.30 m \cdot N due to the friction between the rotating pulley and its axle. What …
  4. physics

    Two masses are suspended from a pulley as shown in the figure below (the Atwood machine). The pulley itself has a mass of 0.20 kg, a radius of 0.15 m, and a constant torque of 0.35 m·N due to the friction between the rotating pulley …
  5. physics

    Two masses are suspended from a pulley as shown in the figure below (the Atwood machine). The pulley itself has a mass of 0.20 kg, a radius of 0.15 m, and a constant torque of 0.35 m·N due to the friction between the rotating pulley …
  6. physics

    Two masses are suspended from a pulley as shown in the figure below (the Atwood machine). The pulley itself has a mass of 0.20 kg, a radius of 0.15 m, and a constant torque of 0.35 m·N due to the friction between the rotating pulley …
  7. physics

    A 15.0 kg mass and a 10.0 kg mass are suspended by a pulley that has a radius of 10.0 cm and a mass of 3.0 kg. The cord has negligible mass and causes the pulley to rotate without slipping. The puller is frictionless and may be treated …
  8. physics!!

    The two masses (m1 = 4.96 kg and m2 = 2.90 kg) in the Atwood's machine shown in the figure below are released from rest, with m1 at a height of 0.800 m above the floor. When m1 hits the ground its speed is 0.203 m/s. Assuming that …
  9. Physics

    Two masses, mA = 40.0 kg and mB = 55.0 kg, are connected by a massless cord that passes over a pulley that is free to rotate about a fixed axis. This device is known as an Atwood’s Machine. The pulley is a solid cylinder of radius …
  10. Physics

    The two masses (m1 = 5.0 kg and m2 = 3.0 kg) in the Atwood's machine shown in the figure are released from rest, with m1 at a height of 0.91 m above the floor. When m1 hits the ground its speed is 1.0 m/s. Assume that the pulley is …

More Similar Questions