CALCULUS

posted by .

Use Newton's method to find all the roots of the equation correct to eight decimal places. Start by drawing a graph to find initial approximations. x^6 - x^5 - 6x^4 - x^2 + x + 8 = 0

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Numerical Analysis

    Using the bisection method, Newton’s method, and the secant method, find the largest positive root correct to three decimal places of x3 − 5x + 3 = 0. (All roots are in [−3,+3].)
  2. calculus

    Use Newton's method to solve the equation sec x = 4 in the interval x in (0, pi/2). In other words, use Newton's Method to compute arcsec(4). (You need to make a good initial guess for the root otherwise Newton's method will probably …
  3. math

    Find all roots of the equation ln(4-x^2)=x correct to 8 decimal places. List all successive approximations.
  4. Calculus-Newton Method Approximation

    Use Newton's method to approximate the positive value of x which satisfies x=2.3cosx Let x0=1 be the initial approximation. Find the next two approximations, x_1 and x2, to four decimal places each.
  5. Calculus

    Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given equation. (Round your answer to four decimal places.) 1/3x^3 + 1/2x^2 + 8 = 0, x1 = −3 I got -3.4808, …
  6. Calculus 1

    Use Newton's method to find all roots of the equation correct to six decimal places. (Enter your answers as a comma-separated list.) (x − 9)^2 =ln x
  7. Calculus 1

    Use Newton's method to find all roots of the equation correct to six decimal places. (Enter your answers as a comma-separated list.) 7/x = 1 + x^3
  8. Calculus 1

    Use Newton's method to find the coordinates, correct to six decimal places, of the point on the parabola y = (x − 5)^2 that is closest to the origin.
  9. Calculus

    Starting with an initial guess of x=2, use Newton’s method to approximate (Third root of 7). Stop the iterations when your approximations converge to four decimal places of accuracy. Compare with the approximation provided by your …
  10. calculus 1

    Use Newton's method to find all solutions of the equation correct to six decimal places. (Enter your answers as a comma-separated list.) 6 cos(x) = x + 1 can somebody explain to me step by step on how to solve this problem?

More Similar Questions