Calculus

posted by .

I really need help with this problem.

A conical vessel is 12 feet across the top and 15 feet deep. If it contains a liquid weighing p lbs/ft^3 (p=62.5 lbs/ft^3)to a depth of 10 feet. Find the work done in pumping the liquid to a height of 3 feet above the vessel.

  • Calculus -

    The center of gravity of the cone is 1/3 of the height of 5m from the bottom, which is 10 feet from the top. To raise all the liquid 3 feet above the top, tha average mass is raised 3 + 10 = 13 feet.

    The work required is the weight of the water in the conical tank,
    W = (1/3)*pi*R^2*H*g
    multiplied by 13 feet.

    The answer will be in ft-lb.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    You have a conical tank, vertex down, which is 12 feet across the top and 18 feet deep. If water flows in at a rate of 9 cubic feet per minute, find the exact rate of change when the water is 6 feet deep. You know the rate of dV/dt …
  2. Calculus - Hydrostatic Pressure

    Please check my work: Find the hydrostatic pressure on one end of a water trough full of water, the end of which is a trapezoid with given dimensions: top of trapezoid = 20 feet, sides of trapezoid both = 8 feet, bottom of trapezoid …
  3. calculus-rate problem

    A conical tank (with vertex down) is 10 feet acros the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep.
  4. Calculus

    A conical vessel is 12 feet across the top and 15 feet deep. If it contains a liquid weighing ñ lbs/ft^3 to a depth of 10 feet. Find the work done in pumping the liquid to a height of 3 feet above the vessel.
  5. calculus

    Water is flowing freely from the bottom of a conical tank which is 12 feet deep and 6 feet in radius at the top. If the water is flowing at a rate of 2 cubic feet per hour, at what rate is the depth of the water in the tank going down …
  6. cal

    A conical tank (with vertex down) is 12 feet across the top and 18 feet deep. If water is flowing into the tank at a rate of 18 cubic feet per minute, find the rate of change of the depth of the water when the water is 10 feet deep. …
  7. Math-How do I do this problem?

    An inverted conical tank (with vertex down) is 14 feet across the top and 24 feet deep. If water is flowing in at a rate of 12 ft3/min, find the rate of change of the depth of the water when the water is 10 feet deep.
  8. Math help, Please

    An inverted conical tank (with vertex down) is 14 feet across the top and 24 feet deep. If water is flowing in at a rate of 12 ft3/min, find the rate of change of the depth of the water when the water is 10 feet deep.
  9. Differential Calculus

    From a faucet, a constant inflow of water is to fill a conical vessel 15 feet deep and 7.5 feet in diameter at the top. water is rising at the rate of 2 feet per minute when the water is 4 feet deep. what is the rate of inflow in ft^3/min?
  10. math - calculus help!

    An inverted conical tank (with vertex down) is 14 feet across the top and 24 feet deep. If water is flowing in at a rate of 12 ft3/min, find the rate of change of the depth of the water when the water is 10 feet deep. 0.229 ft/min …

More Similar Questions