Physics
posted by Amber .
A 0.50kg mass at the end of a spring vibrates 3.0 times per second with an amplitude of 0.15 m. Determine (a) the velocity when it passes the equilibrium point, (b) the velocity when it is 0.10 m from equilibrium, (c) the total energy of the system, and (d) the equation describing the motion of the mass, assuming that at t = 0, x was a maximum.

Here some facts about simple harmonic motion to help you answer these yourself.
(a) The angular frequency is w = 2 pi f radians per second.
Tha maximum velocity is w A, where a is the amplitude.
The spring constant k is related to w and M by
w = sqrt(k/m)
Compute w. You will need it later.
(b) 0.10 m is 2/3 of the maximum deflection. Potential energy is proportion do the square of deflection, and will be (2/3)^2 = 4/9 of the maximum energy, or
(4/9)*(1/2)*k*(Amplitude)^2. The velocity will be (5/9) of the maxiomum energy. Use that to solve for velocity.
(c) I already mentioned that the toal energy is (1/2)*k*(Amplitude)^2
(d) X = A cos wt 
(a) 2,83ms (b) 2,11ms (c) 2,00j (d) x=acoswt .
Respond to this Question
Similar Questions

physics
A 0.50 kg mass at the end of a spring vibrates 6.0 times per second with an amplitude of 0.18 m. (a) Determine the velocity when it passes the equilibrium point. 1Your answer is incorrect. m/s (b) Determine the velocity when it is … 
Physics
A .6kg mass at the end of a spring vibrates 3.0 times per second with an amplitude of .13 m. Determine a.) the velocity when it passes the equilibrium point, b.) the velocity when it is .1 m from equilibrium. c.) the total energy … 
Physics
A 0.70 kg mass at the end of a spring vibrates 4.0 times per second with an amplitude of 0.15 m. Determine the velocity when it passes the equilibrium point. Determine the velocity when it is 0.11 from equilibrium. Determine the total … 
Physics
A spring force constant 210 N/m vibrates with an amplitude of 28.0 cm when .250 kg hangs from it. What is the equation describing this motion as a function of time? 
Physics 203
A block with mass of 5.0kg is suspended from an ideal spring having negligible mass and stretches the spring 0.20m to its equilibrium position. A) What is the force constant of the spring? 
physics
a vertical spring with spring stiffness constant 305 n/m oscillates with an amplitude of 28.0 cm when 0.260 kg hangs from it. the mass passes through the equilibrium point (y=0) with positive velocity at t=0. (a) what equation describes … 
Physics
A 0.52kg mass at the end of a spring vibrates 4.0 times per second with an amplitude of 0.15m . a. Determine the velocity when it passes the equilibrium point. b.Determine the velocity when it is 0.12m from equilibrium c.Determine … 
physics
a 0.25 kg mass at the end of a spring oscillates 2.2 times per second with an amplitude of 0.15m. Determine the speed when it passes the equilibrium point and the speeed when it is 0.1 m from equilibrium 
math
A spring is attached to the ceiling and pulled 6 cm down from equilibrium and released. After 4 seconds the amplitude has decreased to 3 cm. The spring oscillates 15 times each second. Assume that the amplitude is decreasing exponentially. … 
Physics
A massonaspring system has m = 54 kg and k = 225 N/m. The mass is pulled a distance 0.25 m from its equilibrium position and then released. (a) What is the maximum acceleration of the mass?