posted by .

"Evaluate the following indefinite integral using integration by parts:

*integral sign* tan^-1(x) dx"

I let u = tan^-1(x) and dv = dx. Is that right?

  • Never Mind! -

    Oops! I just found out that I don't need to know how to do this type of question.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus - Integration

    Hello! I really don't think I am understanding my calc hw. Please help me fix my errors. Thank you! 1. integral from 0 to pi/4 of (tanx^2)(secx^4)dx It says u = tan x to substitute So if I use u = tan x, then my du = secx^2 then I …
  2. calculus

    Use integration by parts to evaluate the integral of x*sec^2(3x). My answer is ([x*tan(3x)]/3)-[ln(sec(3x))/9] but it's incorrect. u=x dv=sec^2(3x)dx du=dx v=(1/3)tan(3x) [xtan(3x)]/3 - integral of(1/3)tan(3x)dx - (1/3)[ln(sec(3x))/3] …
  3. Calculus II

    Evaluate the integral using method of integration by parts: (integral sign)(e^(2x))sin(5x)dx
  4. Calculus II

    Evaluate using u-substitution: Integral of: 4x(tan(x^2))dx Integral of: (1/(sqrt(x)*x^(sqrt(x))))dx Integral of: (cos(lnx)/x)dx
  5. calculus

    find the indefinite integral: integration of tan^3(7x) dx
  6. calculus

    Using an integration formula,what is the indefinite integral of (sign for integral)(cos(4x)+2x^2)(sin(4x)-x)dx. Any help very much appreciated.
  7. Calc BC

    1. Find the indefinite integral. Indefinite integral tan^3(pix/7)sec^2(pix/7)dx 2. Find the indefinite integral by making the substitution x=3tan(theta). Indefinite integral x*sqrt(9+x^2)dx 3. Find the indefinite integral. Indefinite …
  8. Calculus

    Evaluate the indefinite integral integral sec(t/2) dt= a)ln |sec t +tan t| +C b)ln |sec (t/2) +tan (t/2)| +C c)2tan^2 (t/2)+C d)2ln cos(t/2) +C e)2ln |sec (t/2)+tan (t/2)| +C
  9. Calculus II

    Integrate using integration by parts (integral) (5-x) e^3x u = 5-x du = -dx dv = e^3x v = 3e^3x I wonder if this is right so far. = uv - (integral) v du = (5-x)(3e^3x) - (integral) (-3e^3x) =(5-x)(3e^3x) + (integral) (3e^3x) = (5-x)(3e^3x) …
  10. calculus (please with steps and explanations)

    consider the function f that is continuous on the interval [-5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each integral: …

More Similar Questions