Math

posted by .

Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve.

x = sec Q
y = cos Q

x^2 + y^2 = 1/cos^2 + sin^2/cos^2 =
x^2(1 +sin^2) = x^2(2-cos^2)

x^2(2-1/x^2) = 2x^2 - 1

x^2 - y^2 = 1

My teacher said to use secant*cosine = 1. Please explain!!

  • Math -

    Isn't sec x = 1/cosx ??

    so isn't (secQ)(cosQ)
    = (1/cosQ)(cosQ) = 1 ???

    so we know
    secQ(cosQ) = 1
    xy=1

    looks like we got our equation!

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. trig

    Reduce the following to the sine or cosine of one angle: (i) sin145*cos75 - cos145*sin75 (ii) cos35*cos15 - sin35*sin15 Use the formulae: sin(a+b)= sin(a) cos(b) + cos(a)sin(b) and cos(a+b)= cos(a)cos(b) - sin(a)sin)(b) (1)The quantity …
  2. tigonometry

    expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by -b and using that cos(-b)= cos(b) sin(-b)= -sin(b) gives: sin(a-b) = sin(a)cos(b) - cos(a)sin(b) …
  3. algebra

    Can someone please help me do this problem?
  4. pre-cal

    Simplify the given expression........? (2sin2x)(cos6x) sin 2x and cos 6x can be expressed as a series of terms that involve sin x or cos x only, but the end result is not a simplification. sin 2x = 2 sinx cosx cos 6x = 32 cos^6 x -48
  5. math

    Eliminate the parameter (What does that mean?
  6. Mathematics - Trigonometric Identities

    Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y …
  7. TRIG!

    Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 …
  8. Math

    Eliminate the parameter and write the corresponding rectangular equation whose graph represents the curve. x = secQ Y = tanQ Would I use cos^2Q + sin^2Q = 1?
  9. calculus

    Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x) (dy/dx)-(dx/du)= …
  10. precalculus

    Can you check my work? sketch the curve represented by the parametric equations. Then eliminate and write the corresponding rectangular equation whose graph represents the curve. x=2+3cosθ y=2sinθ answer: cosθ=x/5 sinθ=y/2 cos^2θ

More Similar Questions