# Trigonometry

posted by .

Solve for x in the interval 0<=x<360:

1. 2sin2x+cosx =0
2. cos2x=-2sinx
3. tanx=2sinx
4. 3cos2x+cosx+2=0

## Similar Questions

1. ### Pre-Calc

Trigonometric Identities Prove: (tanx + secx -1)/(tanx - secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x - 1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1 - cosx)/cosx)/((sinx …
2. ### Math

How do I solve this? tan^2x= 2tanxsinx My work so far: tan^2x - 2tanxsinx=0 tanx(tanx - 2sinx)=0 Then the solutions are: TanX=0 and sinX/cosX = 2 sin X Divide through by sinX: we have to check this later to see if allowed (ie sinX
3. ### Trig

Verify the identity: tanx(cos2x) = sin2x - tanx Left Side = (sinx/cosx)(2cos^2 x -1) =sinx(2cos^2 x - 1)/cosx Right Side = 2sinx cosx - sinx/cosx =(2sinxcos^2 x - sinx)/cosx =sinx(2cos^2 x -1)/cosx = L.S. Q.E.D.
4. ### Calc II

For the following question, we need to find the length of the polar curve: r= 2/(1-cosx) from pi/2 </= x </= pi dr/dx= -2sinx/(1-cosx)^2 therefore the length would be expressed as follows: the integral from pi/2 to pi of (sqrt)[(2/(1-cos))^2 …
5. ### trig

Solve for [0, 360) 2sinxcosx + cosx =0 2sinxcosx = -cosx 2sinx = -cosx/cosx sinx = -1/2 {210, 330) Is this correct?
6. ### trig

find all solutions of 2sinx=1-cosx in the interval from 0 to 360
7. ### Trigonometry

Simplify #1: cscx(sin^2x+cos^2xtanx)/sinx+cosx = cscx((1)tanx)/sinx+cosx = cscxtanx/sinx+cosx Is the correct answer cscxtanx/sinx+cosx?
8. ### Trigonometry Check

Simplify #3: [cosx-sin(90-x)sinx]/[cosx-cos(180-x)tanx] = [cosx-(sin90cosx-cos90sinx)sinx]/[cosx-(cos180cosx+sinx180sinx)tanx] = [cosx-((1)cosx-(0)sinx)sinx]/[cosx-((-1)cosx+(0)sinx)tanx] = [cosx-cosxsinx]/[cosx+cosxtanx] = [cosx(1-sinx]/[cosx(1+tanx] …
9. ### Trig (Last URGENT)

sin2x+cosx=0 , [-180,180) = 2sinxcosx+cosx=0 = cosx(2sinx+1)=0 cosx=0 x1=cos^-1(0) x1=90 x2=360-90 x2=270 270 doesn't fit in [-180,180) what do I do?
10. ### maths

by equating the coefficients of sin x and cos x , or otherwise, find constants A and B satisfying the identity. A(2sinx + cosx) + B(2cosx - sinx) = sinx + 8cosx I got A = 2, B = 3, which the answers said were correct. However, another …

More Similar Questions

Post a New Question