calculus
posted by Sarita .
A) How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10?
B) So once that is found, then how can you prove that if 0(<or=)u(<or=)v(<or=)10, then 0(<or=)sqrt(u+1)(<or=)sqrt(v+1)(<or=)10?

How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10?
===========================
does the square root increase (is the derivative positive) as x goes from 0 to 10 ?
If so the left side of the domain is minimum and the right side is maximum of the function and we only need to test the ends.
d (x+1)^.5 / dx = .5 /sqrt(x+1)
that is positive everywhere in the domain so all we have to prove is the end points.
0 </= x </= 10
if x = 0
sqrt x+1 = sqrt 1 = 1
if x = 10
sqrt x+1 = sqrt 11 = 3.32
so
1 </ sqrt(x+1) </= 3.32 
for part b again the derivative is positive throughout the domain so if v is right of u then sqrt (1+v) > sqrt(1+u)

thank you!
Additionally,
C) They give a recursively defined sequence: a_1=0.3; a_(n+1)=sqrt((a_n)+1)for n>1
How do you find out the first five terms for it. then prove that this sequence converges. What is a specific theorem that will guarantee convergence, along with the algebraic results of parts A and B? 
.3
sqrt 1.3 = 1.14
sqrt 2.14 = 1.46
sqrt 2.46 = 1.57
sqrt 2.57 = 1.60
hmmm, not getting bigger very fast.
let's see what happens to the derivative for large n
.5/sqrt(x+1)
ah ha, look at that. When n gets big, the derivative goes to zero. So the function stops changing. 
But why would you look for the derivative to go to zero? Does it have to do anything with the theorem: If summation of a_n converges then limit_(n>infinity) of a_n = 0. If so, what would the limit be approaching? 10 or infinity? But if not, then what theorem would we use? I know you explained about the larger n for the derivative, but I do not understand how that relates to one of the theorems.

But doesn't it converge to infinity and not 0?

we want it to converge to 0 right? But does it even converge if it goes to infinity, or is that divergence?

Do you do the limit on the derivative?
Or is there another way to prove convergence with a theorem of some sort?
Respond to this Question
Similar Questions

math calculus please help!
l = lim as x approaches 0 of x/(the square root of (1+x)  the square root of (1x) decide whether: l=1 or l=0 or l=1 Let me make sure I understand the question. Do we have lim x>0 x/[sqrt(1+x)  sqrt(1x)] ? 
Math Help please!!
Could someone show me how to solve these problems step by step.... I am confused on how to fully break this down to simpliest terms sqrt 3 * sqrt 15= sqrt 6 * sqrt 8 = sqrt 20 * sqrt 5 = since both terms are sqrt , you can combine … 
Calculus
Please look at my work below: Solve the initialvalue problem. y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4 r^2+4r+6=0, r=(16 +/ Sqrt(4^24(1)(6)))/2(1) r=(16 +/ Sqrt(8)) r=8 +/ Sqrt(2)*i, alpha=8, Beta=Sqrt(2) y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2 … 
Math/Calculus
Solve the initialvalue problem. Am I using the wrong value for beta here, 2sqrt(2) or am I making a mistake somewhere else? 
calculus
A) How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10? 
Calculus
A) How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10? 
calculus
A) How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10? 
calculus
A) How do you prove that if 0(<or=)x(<or=)10, then 0(<or=)sqrt(x+1)(<or=)10? 
calculus
prove that d/dx 4x .√(x + √x) = 6x+5 (x)1/2/√(x + √x) solution is d/dx 4x.[x+(x)1/2]1/2 = d/dx 4x.[x+(x)^1/2]^1/2 d/dx 4x.[x+(x)^1/2]^1/2 Product Rule = 4x[1/2(x+(x)^1/2)^1/2 * (1+1/2x^1/2) +[x+(x)^1/2]^1/2*4 … 
Real Analysis (Math)
Prove: [1/sqrt(2)] [sqrt(a) + sqrt(b)] <= sqrt(a + b) <= sqrt(a) + sqrt(b) for all nonnegative real numbers a and b.