trig

posted by .

(1)
tan^2x(1+cot^2x)= _____________

(1-sin^2x)

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Trig

    Given: cos u = 3/5; 0 < u < pi/2 cos v = 5/13; 3pi/2 < v < 2pi Find: sin (v + u) cos (v - u) tan (v + u) First compute or list the cosine and sine of both u and v. Then use the combination rules sin (v + u) = sin u cos …
  2. Math (Trig)

    sorry, another I can't figure out Show that (1-cot^2x)/(tan^2x-1)=cot^2x I started by factoring both as difference of squares. Would I be better served by writing in terms of sine and cosine?
  3. Trig

    Simplify: csc A - sin A - Cot A Cot A Csc A 1/sin - sin A - 1/tan 1/tan 1/sin -sinA?
  4. Math-Trig

    1. Create an algebraic expression for sin(arccosx-arcsin3x) 2. The cosx=4/5, x lies in quadrant 4. Find sin x/2 3.Determine all solutions in (0,2pie) for sin4xsin^2x=3, cot^2v(3-1)cotx=v(3), cos^2x=cosx, and tan^2x-6tanx+4=0 4. Solve; …
  5. trig

    I do not understand these problems. :S I'd really appreciate the help. Use trigonometric identities to transform the left side of the equation into the right side. cot O sin O = cos O sin^2 O - cos^2O = 2sin^2 O -1 (tan O + cot O)/tan …
  6. Math - Trig

    I'm trying to verify these trigonometric identities. 1. 1 / [sec(x) * tan(x)] = csc(x) - sin(x) 2. csc(x) - sin(x) = cos(x) * cot(x) 3. 1/tan(x) + 1/cot(x) = tan(x) + cot(x) 4. csc(-x)/sec(-x) = -cot(x)
  7. Trigonometry

    Please review and tell me if i did something wrong. Find the following functions correct to five decimal places: a. sin 22degrees 43' b. cos 44degrees 56' c. sin 49degrees 17' d. tan 11degrees 37' e. sin 79degrees 23'30' f. cot 19degrees …
  8. trigonometry repost

    Reduce (csc^2 x - sec^2 X) to an expression containing only tan x. (is this correct?
  9. TRIG..............

    Q.1 Prove the following identities:- (i) tan^3x/1+tan^2x + cot^3x/1+cot^2 = 1-2sin^x cos^x/sinx cosx (ii) (1+cotx+tanx)(sinx-cosx)/sec^3x-cosec^3x = sin^2xcos^2x.
  10. precalculus

    For each of the following determine whether or not it is an identity and prove your result. a. cos(x)sec(x)-sin^2(x)=cos^2(x) b. tan(x+(pi/4))= (tan(x)+1)/(1-tan(x)) c. (cos(x+y))/(cos(x-y))= (1-tan(x)tan(y))/(1+tan(x)tan(y)) d. (tan(x)+sin(x))/(1+cos(x))=tan(x) …

More Similar Questions