# Physics

posted by .

A 0.006-kg bullet traveling horizontally with a speed of 1.00 103 m/s enters an 21.1-kg door, imbedding itself 10.4 cm from the side opposite the hinges as in the figure below. The 1.00-m-wide door is free to swing on its hinges.

(c) At what angular speed does the door swing open immediately after the collision? (The door has the same moment of inertia as a rod with axis at one end.)

(d) Calculate the energy of the door-bullet system and determine whether it is less than or equal to the kinetic energy of the bullet before the collision.

I can't figure out C

• Physics -

A 0.006-kg bullet traveling horizontally with a speed of 1.00 103 m/s enters an 21.1-kg door, imbedding itself 10.4 cm from the side opposite the hinges as in the figure below. The 1.00-m-wide door is free to swing on its hinges.
-------------------------------------
C) Angular momentum of the system is the same before and after. Assume rotation about the door hinge.

d) before (1/2)m v^2
after =(1/2) I w^2
it better be much less after.
Angular momentum of bullet alone about door hinge L = m v r = .006 * 10^3 * (1.000-.104) = 5.376 kg m^2/s

Angular momentum of system after collision (ignore mass of bullet)
L = I w where I = ( 1/3) m b^2 and w is angular velocity and b is door width.
L = (1/3)(21.1)(1)^2 w = 7.033 w

so
7.033 w = 5.376

=

• Physics -

I'm sorry I meant I cant figure out part D.

• Physics -

energy before = (1/2) m v^2
energy after = (1/2) I w^2

energy after better be much smaller than energy before

• Physics -

before (1/2) (.006)(10^3)^2 = 3000 Joules
after (1/2)(7.003)(.7644)^2 = 2.046 Joules
the bullet entering the wood turned most of the energy into heat

• Physics -

By the way, we did not get the same answer for part c

## Similar Questions

1. ### physics

A 0.005-kg bullet traveling horizontally with a speed of 1.00 103 m/s enters an 20.3-kg door, imbedding itself 10.6 cm from the side opposite the hinges as in the figure below. The 1.00-m-wide door is free to swing on its hinges. (c) …
2. ### College physics

A 0.006 00-kg bullet traveling horizontally with a speed of 1.00 x 10^3 m/s enters an 20.1-kg door, imbedding itself 10.9 cm from the side opposite the hinges as in the figure below. The 1.00-m wide door is free to swing on its frictionless …
3. ### Physics: Rotational Motion

A 0.005kg bullet travelling horizontally with a speed of 1000m/s enters an 18kg door, embedding itself 10cm from the side opposite the hinges as in figure. The 1m wide door is free to swing on the hinges. a) Before it hits the door, …
4. ### Physics

There is a door that is 1.0 m wide and can rotate about a vertical axis without friction. The doorâ€™s mass is 15 kg and is free to swing open. Someone fires a 10 g bullet at 400 m/s into the exact center of the door, perpendicular …
5. ### Physics

A 15 kg, 1m wide door which has frictionless hinges is closed but unlocked. A 400 g ball hits the exact middle of the door at a velocity of 35 m/s and bounces off elastically, thereby causing the door to slowly swing open. How long …
6. ### heeeeeeeeeeeeeelp Physics

A 15 kg, 1m wide door which has frictionless hinges is closed but unlocked. A 400 g ball hits the exact middle of the door at a velocity of 35 m/s and bounces off elastically, thereby causing the door to slowly swing open. How long …
7. ### Physics

A 15 kg, 1m wide door which has frictionless hinges is closed but unlocked. A 400 g ball hits the exact middle of the door at a velocity of 35 m/s and bounces off elastically, thereby causing the door to slowly swing open. How long …
8. ### Physics

A 15 kg, 1m wide door which has frictionless hinges is closed but unlocked. A 400 g ball hits the exact middle of the door at a velocity of 35 m/s and bounces off elastically, thereby causing the door to slowly swing open. How long …
9. ### Physics

A 10 g dart traveling at 400 m/s sticks into a 10 kg, 1 m wide door at the edge opposite the hinge causing the door to swing open. What is the angular velocity of the door immediately after impact?
10. ### Physics

A 10 g dart traveling at 400 m/s sticks into a 10 kg, 1 m wide door at the edge opposite the hinge causing the door to swing open. What is the angular velocity of the door immediately after impact?

More Similar Questions