Math(Please help)
posted by Abbey .
2) Use the sum and difference identites
sin[x + pi/4] + sin[xpi/4] = 1
sinx cospi/4 + cosxsin pi/4 + sinx cos pi/4  cosx sin pi/4 = 1
2 sin x cos pi/4 =1
cos pi/4 = sqr2/2
2sin^x(sqrt2/2) = 1
sin x = sqrt2
x = 7pi/4 and 5pi/4
Am I correct?

2sin^x(sqrt2/2) = 1
sin x = 1/sqrt2 =  sqrt 2 /2
x = pi + pi/4 = 5 pi/4
x = 2 pi  pi/4 = 7 pi /4
so I agree with you but you seem to have a typo
Respond to this Question
Similar Questions

Integral
That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = cos x du = cos x dx The integral is u v  integral of v du = sinx cosx + integral of cos^2 dx which can be rewritten integral … 
Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side … 
Math help again
cos(3π/4+x) + sin (3π/4 x) = 0 = cos(3π/4)cosx + sin(3π/4)sinx + sin(3π/4)cosx  cos(3π/4)sinx = 1/sqrt2cosx + 1/sqrt2sinx + 1/sqrt2cosx  (1/sqrt2sinx) I canceled out 1/sqrt2cosx and 1/sqrt2cosx Now … 
TRIG!
Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1  (3/4)sin^2 2x work on one side only! Responses Trig please help!  Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 … 
calculus
Could someone check my reasoning? thanx Find the derivative of the function. sin(sin[sinx]) I need to use the chain rule to solve. So I take the derivative sin(sin[sinx) first. Then multiply that by the inside which is the derivative 
Math(Please help)
1)tan Q = 3/4 Find cosQ 3^2 + 4^2 = x^2 9+16 = sqrt 25 = 5 cos = ad/hy = 4/5 Am I correct? 
Math (trigonometric identities)
I was given 21 questions for homework and I can't get the last few no matter how hard and how many times I try. 17. Sinx1/sinx+1 = cos^2x/(sinx+1)^2 18. Sin^4x + 2sin^2xcos^2x + cos^4x = 1 19. 4/cos^2x  5 = 4tan^2x  1 20. Cosx … 
Trigonometry
Prove the following trigonometric identities. please give a detailed answer because I don't understand this at all. a. sin(x)tan(x)=cos(x)/cot^2 (x) b. (1+tanx)^2=sec^2 (x)+2tan(x) c. 1/sin(x) + 1/cos(x) = (cosx+sinx)(secx)(cscx) d. … 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know … 
Math
I need help solving for all solutions for this problem: cos 2x+ sin x= 0 I substituted cos 2x for cos^2xsin^2x So it became cos^2(x)sin^2(x) +sinx=0 Then i did 1sin^2(x)sin^2(x)+sinx=0 = 12sin^2(x)+sinx=0 = sinx(2sinx+1)=1 What …