precal

posted by .

complete the identity:
sin^4x-cos^4x

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. tigonometry

    expres the following as sums and differences of sines or cosines cos8t * sin2t sin(a+b) = sin(a)cos(b) + cos(a)sin(b) replacing by by -b and using that cos(-b)= cos(b) sin(-b)= -sin(b) gives: sin(a-b) = sin(a)cos(b) - cos(a)sin(b) …
  2. trig

    it says to verify the following identity, working only on one side: cotx+tanx=cscx*secx Work the left side. cot x + tan x = cos x/sin x + sin x/cos x = (cos^2 x +sin^2x)/(sin x cos x) = 1/(sin x cos x) = 1/sin x * 1/cos x You're almost …
  3. Mathematics - Trigonometric Identities

    Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y …
  4. Math - Calculus

    The identity below is significant because it relates 3 different kinds of products: a cross product and a dot product of 2 vectors on the left side, and the product of 2 real numbers on the right side. Prove the identity below. | a …
  5. Trigonometry

    Prove the identity sin(x+y+z)+sin(x+y-z)+sin(x-y+z)+ sin(x-y-z) = 4 sin(x)cos(y)cos(z) This identity is so long and after i tried to expand the left side and it just looked something crap Thanks for you help :)
  6. TRIG!

    Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 …
  7. Math

    Solve this equation algebraically: (1-sin x)/cos x = cos x/(1+sin x) --- I know the answer is an identity, and when graphed, it looks like cot x. I just don't know how to get there. I tried multiplying each side by its conjugate, but …
  8. Precal

    I do not understand how to do this problem ((sin^3 A + cos^3 A)/(sin A + cos A) ) = 1 - sin A cos A note that all the trig terms are closed right after there A's example sin A cos A = sin (A) cos (A) I wrote it out like this 0 = - …
  9. trig

    For each expression in column I, choose the expression from column II to complete an identity: Column I Column II 1. -tanxcosx A. sin^2x/cos^2x 2. sec^2x-1 B. 1/sec^2x 3. sec x/cscx C. sin(-x) 4. 1+sin^2x D.csc^2x-cot^2x+sin^2x 5. …
  10. Precal

    Verify the identity: sin^(1/2)x*cosx - sin^(5/2)*cosx = cos^3x sq root sin x I honestly have no clue how to approach the sin^(5/2)*cosx part of the equation

More Similar Questions