calculus

posted by .

Evaluate

lim as x-> 1

(x^2 + |x -1| - 1 ) / ( |x-1| )

  • calculus -

    Evaluate the limit approaching 1 from both x>1 and x<1 directins. The x-1 terms will get switched in sign in the latter case.

    Use L'Hopital's rule and see if the limit is the same in both directions.

    For x-> 1 from above, the limit is 2x + 1 = 3

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. CALCULUS

    Evaluate each of the following. (a) lim x->0(e^x)-1-x/ x^2 (b) lim x->0 x-sinx/x^3 (c) lim x->infinity (In x)^2/x (d) lim x->0+ (sinx)In x (e) lim x->0+ (cos3x)^5/x (f) lim x->1+ ((1/x-1) -(1/In x))
  2. math

    i need some serious help with limits in pre-calc. here are a few questions that i really do not understand. 1. Evaluate: lim (3x^3-2x^2+5) x--> -1 2. Evaluate: lim [ln(4x+1) x-->2 3. Evaluate: lim[cos(pi x/3)] x-->2 4. Evaluate: …
  3. calculus - please help!

    if f is a function such that lim x->6,f(x)=-5, evaluate lim x->6 -2f(x)+5f(x+3).
  4. Calculus

    Find the following limits algebraically or explain why they don’t exist. lim x->0 sin5x/2x lim x->0 1-cosx/x lim x->7 |x-7|/x-7 lim x->7 (/x+2)-3/x-7 lim h->0 (2+h)^3-8/h lim t->0 1/t - 1/t^2+t
  5. calculus

    Evaluate the following limits after identifying the indeterminate form. Use Hospital's rule. d) lim x_0+ (xe^(2x) + 1)^(5/x) e) lim x_(Pi/2)+ (1 + sec3x)^(cot3x) Thank you!
  6. Calculus 1

    Evaluate the following limits after identifying the indeterminate form. Use Hospital's rule. d) lim x_0+ (xe^(2x) + 1)^(5/x) e) lim x_(Pi/2)+ (1 + sec3x)^(cot3x) Thank you!
  7. Calculus

    Evaluate each limit. If it exists. a) Lim x^3 + 1 x->1 ------- x + 1 b) Lim 3x^2 - x^3 x->0 ---------- x^3 + 4x^2 c) Lim 16 - x x->16 --------- (√x) - 4
  8. Calculus

    F(x)=|x-5| evaluate the following limits lim x->5- ( f(x)-f(5))/(x-5) lim x->5+ ( f(x)-f(5))/(x-5)
  9. Calculus Help Stuck Part 2?

    Evaluate the lim a. lim x--> 64 (cube root x-4/x-64)
  10. Calculus Answer Confirming Not Sure Im Right Help?

    Evaluate the lim a. lim x--> 64 (cube root x-4/x-64) (∛x-4)/(x-64) -> 0/0 so then let cube root x = u u-4/u^3-64 u-4/u^3-64 = u-4/u-4(u^2+4u+16) the u-4 cancel each other out leaving lim x->64 = 1/u^2+4u+16 1/64^2+4(64)=16 …

More Similar Questions