Math(Please help)
posted by Hannah .
Use the fundamental identities to simplify the expression.
csc Q / sec Q
so this would be 1/sinx / 1/cosx
and then 1/sinx times cosx/1 = sin x cosx
Is this correct so far? If it is I do not know what to do next.

Whenever you post an equation involving fractions or squareroots, use parentheses to enclose the numerator, the denominator, or the squareroot, whichever the case may be.
This will help you avoid ambiguities which could lead to mistakes in your calculations.
csc Q / sec Q
=(csc Q) / (sec Q)
=(1/sin Q) / (1/ cosQ)
=(1/sin Q) * cos Q
= (cos Q) / (sin Q)
= ?
Respond to this Question
Similar Questions

Math
Verify the identity . (cscXcotX)^2=1cosX/1+cosX _______ sorry i cant help you (cscXcotX)=1/sinX  cosX/sinX = (1cosX)/sinX If you square this you have (1cosX)^2/(sinX)^2 Now use (sinX)^2 = 1  (cosX)^2 to get (1cosX)^2 / 1  … 
PreCalc
Trigonometric Identities Prove: (tanx + secx 1)/(tanx  secx + 1)= tanx + secx My work so far: (sinx/cosx + 1/cosx + cosx/cosx)/(sinx/cos x  1/cosx + cosx/cosx)= tanx + cosx (just working on the left side) ((sinx + 1  cosx)/cosx)/((sinx … 
Trigonometry.
( tanx/1cotx )+ (cotx/1tanx)= (1+secxcscx) Good one! Generally these are done by changing everything to sines and cosines, unless you see some obvious identities. Also generally, it is best to start with the more complicated side … 
Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
Mathematics  Trigonometric Identities
Prove: (tanx)(sinx) / (tanx) + (sinx) = (tanx)  (sinx) / (tanx)(sinx) What I have so far: L.S. = (sinx / cosx) sinx / (sinx / cosx) + sinx = (sin^2x / cosx) / (sinx + (sinx) (cosx) / cosx) = (sin^2x / cosx) / (cosx / sinx + sinxcosx) 
Math
Use the fundamental identities to simplify the expression. csc Q / sec Q so this would be 1/sinx / 1/cosx and then 1/sinx times cosx/1 = sin x cosx Is this correct so far? 
PreCal
Use the fundamental identities to simplify the expression. csc Q / sec Q so this would be 1/sinx / 1/cosx and then 1/sinx times cosx/1 = sin x cosx Is this correct so far? 
Math 12
Simplify #1: cscx(sin^2x+cos^2xtanx)/sinx+cosx = cscx((1)tanx)/sinx+cosx = cscxtanx/sinx+cosx Is the correct answer cscxtanx/sinx+cosx? 
Trigonometry Check
Simplify #3: [cosxsin(90x)sinx]/[cosxcos(180x)tanx] = [cosx(sin90cosxcos90sinx)sinx]/[cosx(cos180cosx+sinx180sinx)tanx] = [cosx((1)cosx(0)sinx)sinx]/[cosx((1)cosx+(0)sinx)tanx] = [cosxcosxsinx]/[cosx+cosxtanx] = [cosx(1sinx]/[cosx(1+tanx] … 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know …