Physics

posted by .

The drawing shows a large cube (mass = 48 kg) being accelerated across a horizontal frictionless surface by a horizontal force . A small cube (mass = 2.1 kg) is in contact with the front surface of the large cube and will slide downward unless is sufficiently large. The coefficient of static friction between the cubes is 0.71. What is the smallest magnitude that can have in order to keep the small cube from sliding downward?

  • Physics -

    52.2

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. PHYSICS

    The drawing shows a large cube (mass = 34 kg) being accelerated across a horizontal frictionless surface by a horizontal force P. A small cube (mass = 3.3 kg) is in contact with the front surface of the large cube and will slide downward …
  2. Physics

    The drawing shows a large cube (mass = 25 kg) being accelerated across a horizontal frictionless surface by a horizontal force . A small cube (mass = 4.0 kg) is in contact with the front surface of the large cube and will slide downward …
  3. Physics

    The drawing shows a large cube (mass = 27 kg) being accelerated across a horizontal frictionless surface by a horizontal force vector P . A small cube (mass = 4.0 kg) is in contact with the front surface of the large cube and will …
  4. Physics

    The drawing shows a large cube (mass=42 kg) being accelerated across a horizontal table by a horizontal force P. The coefficient of kinetic friction between the table and large cube is 0.24. A small cube (mass= 5.0 kg) is in contact …
  5. Physics

    The drawing shows a large cube (mass=42 kg) being accelerated across a horizontal table by a horizontal force P. The coefficient of kinetic friction between the table and large cube is 0.24. A small cube (mass= 5.0 kg) is in contact …
  6. Physics

    The diagram below shows a large cube of mass 25 kg being accelerated across a frictionless level floor by a horizontal force, F. A small cube of mass 4.0 kg is in contact with the front surface of the cube. The coefficient of static …
  7. Physics Classical Mechanics Help ASAP

    A small cube of mass m1= 1.0 kg slides down a circular and frictionless track of radius R= 0.6 m cut into a large block of mass m2= 4.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table. …
  8. classical mechanic

    A small cube of mass m1= 1.0 kg slides down a circular and frictionless track of radius R= 0.4 m cut into a large block of mass m2= 4.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table. …
  9. physics

    A small cube of mass m1= 1.0 kg slides down a circular and frictionless track of radius R= 0.4 m cut into a large block of mass m2= 4.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table. …
  10. physics

    A small cube of mass m1= 2.0 kg slides down a circular and frictionless track of radius R= 0.6 m cut into a large block of mass m2= 5.0 kg as shown in the figure below. The large block rests on a horizontal and frictionless table. …

More Similar Questions